Solving the Problem of Blockwise Isomorphism of Polynomials with Circulant Matrices

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12835))

Included in the following conference series:

Abstract

The problem of Isomorphism of Polynomials (IP problem) is known to be important to study the security of multivariate public key cryptosystems, one of major candidates of post-quantum cryptography, against key recovery attacks. In these years, several schemes based on the IP problem itself or its generalization have been proposed. At PQCrypto 2020, Santoso introduced a generalization of the problem of Isomorphism of Polynomials, called the problem of Blockwise Isomorphism of Polynomials (BIP problem), and proposed a new Diffie-Hellman type encryption scheme based on this problem with Circulant matrices (BIPC problem). Quite recently, Ikematsu et al. proposed an attack called the linear stack attack to recover an equivalent key of Santoso’s encryption scheme. While this attack reduced the security of the scheme, it does not contribute to solve the BIPC problem itself. In the present paper, we describe how to solve the BIPC problem directly by simplifying the BIPC problem due to the conjugation property of circulant matrices. In fact, we experimentally solved the BIPC problem with the parameter, which has 256 bit security by Santoso’s security analysis and has 72.7 bit security against the linear stack attack, by about 10 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouillaguet, C., Faugére, J.-C., Fouque, P.-A., Perret, L.: Isomorphism of Polynomials: New Results (2009). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=20524EF65899B40DEE494630B0574F53?doi=10.1.1.156.9570&rep=rep1&type=pdf

  2. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS: A Great Multivariate Short Signature. https://www-polsys.lip6.fr/Links/NIST/GeMSS.html

  3. Chen, J., Tan, C.H., Li, X.: Practical cryptanalysis of a public key cryptosystem based on the morphism of polynomials problem. Tsinghua Sci. Technol. 23, 671–679 (2018)

    Article  Google Scholar 

  4. Chen, M.-S., et al.: Rainbow Signature. https://www.pqcrainbow.org/

  5. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_3

    Chapter  Google Scholar 

  6. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security Analysis on an El-Gamal-like Multivariate Encryption Scheme Based on Isomorphism of Polynomials (2021). https://eprint.iacr.org/2021/169

  7. NIST, Post-Quantum Cryptography, Round 3 submissions. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

  8. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4

    Chapter  Google Scholar 

  9. Santoso, B.: Generalization of isomorphism of polynomials with two secrets and its application to public key encryption. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 340–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_19

    Chapter  Google Scholar 

  10. Wang, H., Zhang, H., Mao, S., Wu, W., Zhang, L.: New public-key cryptosystem based on the morphism of polynomials problem. Tsinghua Sci. Technol. 21, 302–311 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for reading the previous draft of this paper carefully and giving helpful comments. He was supported by JST CREST no. JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no. 17K05181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Hashimoto .

Editor information

Editors and Affiliations

A Toy Example

A Toy Example

We now demonstrate how to solve the BIPC problem for \((q,n,m,k)=(2,6,2,2)\) as a toy example. The public keys \(\mathbf {f}=(\mathbf {f}_{1},\mathbf {f}_{2})=(f_{11},f_{12},f_{21},f_{22})\) and \(\mathbf {g}=(\mathbf {g}_{1},\mathbf {g}_{2})=(g_{11},g_{12},g_{21},g_{22})\) are as follows.

$$\begin{aligned}&f_{11}(\mathbf {x})= {}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 \\ &{} &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} &{} 1 &{} 1 \\ &{} &{} &{} &{} &{} 0 \end{pmatrix}}\mathbf {x}, \qquad f_{12}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} 1 \\ &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ &{} &{} 1 &{} 0 &{} 1 &{} 1 \\ &{} &{} &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} &{} 1 &{} 1 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \\&f_{21}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 0 &{} 1 &{} 1 &{} 1 &{} 0 \\ &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ &{} &{} 0 &{} 1 &{} 0 &{} 0 \\ &{} &{} &{} 0 &{} 1 &{} 1 \\ &{} &{} &{} &{} 0 &{} 0 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \qquad f_{22}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 \\ &{} 0 &{} 0 &{} 1 &{} 1 &{} 1 \\ &{} &{} 0 &{} 1 &{} 0 &{} 0 \\ &{} &{} &{} 0 &{} 0 &{} 1 \\ &{} &{} &{} &{} 1 &{} 1 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \\&g_{11}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} 1 &{} 1 &{} 0 &{} 1 \\ &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ &{} &{} 1 &{} 0 &{} 0 &{} 1 \\ &{} &{} &{} 0 &{} 1 &{} 1 \\ &{} &{} &{} &{} 1 &{} 0 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \qquad g_{12}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} 0 &{} 1 &{} 1 &{} 1 \\ &{} &{} &{} 1 &{} 1 &{} 1 \\ &{} &{} &{} &{} 0 &{} 0 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \\&g_{21}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ &{} 0 &{} 1 &{} 1 &{} 0 &{} 1 \\ &{} &{} 1 &{} 1 &{} 0 &{} 1 \\ &{} &{} &{} 0 &{} 0 &{} 1 \\ &{} &{} &{} &{} 1 &{} 0 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \qquad g_{22}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 \\ &{} 1 &{} 1 &{} 1 &{} 1 &{} 0 \\ &{} &{} 0 &{} 0 &{} 0 &{} 1 \\ &{} &{} &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} &{} 1 &{} 0 \\ &{} &{} &{} &{} &{} 0 \end{pmatrix}}\mathbf {x}, \end{aligned}$$

where the coefficient matrices are expressed by triangular matrices. Our aim is to recover \(S_{1},S_{2}\in \mathrm {Circ}(6)\), \(T_{1},T_{2}\in \mathrm {Circ}(2)\) satisfying

$$\begin{aligned} \begin{aligned} \begin{pmatrix}g_{11}(\mathbf {x}) \\ g_{12}(\mathbf {x})\end{pmatrix} =&T_{1}\begin{pmatrix}f_{11}(S_{1}(\mathbf {x})) \\ f_{12}(S_{1}(\mathbf {x}))\end{pmatrix} +T_{2}\begin{pmatrix}f_{21}(S_{2}(\mathbf {x})) \\ f_{22}(S_{2}(\mathbf {x}))\end{pmatrix},\\ \begin{pmatrix}g_{21}(\mathbf {x}) \\ g_{22}(\mathbf {x})\end{pmatrix} =&T_{1}\begin{pmatrix}f_{21}(S_{1}(\mathbf {x})) \\ f_{22}(S_{1}(\mathbf {x}))\end{pmatrix} +T_{2}\begin{pmatrix}f_{11}(S_{2}(\mathbf {x})) \\ f_{12}(S_{2}(\mathbf {x}))\end{pmatrix}. \end{aligned} \end{aligned}$$
(8)

Let \(\theta \) be a cubic root of 1 (i.e. \(\theta ^{2}+\theta +1=0\)),

$$\begin{aligned}&K_{6}:= {\begin{pmatrix} 1 &{} &{} &{} &{} &{} \\ &{} &{} &{} 1 &{} &{} \\ &{} &{} &{} &{} 1 &{} \\ &{} 1 &{} &{} &{} &{} \\ &{} &{} 1 &{} &{} &{} \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}, \quad \varTheta _{3}:=\begin{pmatrix} 1 &{} 1 &{} 1 \\ 1 &{} \theta &{} \theta ^{2} \\ 1 &{} \theta ^{2} &{} \theta \end{pmatrix},\quad Q_{2}=B_{2}:=\begin{pmatrix}1 &{} 0 \\ 1 &{} 1\end{pmatrix} \end{aligned}$$

and \(Q_{6}:=K_{6}\left( \varTheta _{3}\otimes B_{2}\right) \). Then \(\bar{\mathbf {f}}_{1}=Q_{2}^{-1}\circ \mathbf {f}_{1} \circ Q_{6}=(\bar{f}_{11},\bar{f}_{12})\), \(\bar{\mathbf {f}}_{2}=Q_{2}^{-1}\circ \mathbf {f}_{2} \circ Q_{6}=(\bar{f}_{21},\bar{f}_{22})\), \(\bar{\mathbf {g}}_{1}=Q_{2}^{-1}\circ \mathbf {g}_{1} \circ Q_{6}=(\bar{g}_{11},\bar{g}_{12})\), \(\bar{\mathbf {g}}_{2}=Q_{2}^{-1}\circ \mathbf {g}_{2} \circ Q_{6}=(\bar{g}_{21},\bar{g}_{22})\) are as follows.

$$\begin{aligned}&\bar{f}_{11}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} 0 &{} \theta &{} 0 &{} \theta ^{2} \\ &{} 0 &{} \theta ^{2} &{} 1 &{} \theta &{} 1 \\ &{} &{} 1 &{} 1 &{} 0 &{} \theta \\ &{} &{} &{} \theta &{} \theta ^{2} &{} 1 \\ &{} &{} &{} &{} 1 &{} 1 \\ &{} &{} &{} &{} &{} \theta ^{2} \end{pmatrix}}\mathbf {x}, \qquad \bar{f}_{12}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 0 &{} 1 &{} \theta ^{2} &{} 1 &{} \theta \\ &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} \theta ^{2} &{} 1 &{} 0 &{} 0 \\ &{} &{} &{} \theta &{} 0 &{} 0 \\ &{} &{} &{} &{} \theta &{} 1 \\ &{} &{} &{} &{} &{} \theta ^{2} \end{pmatrix}}\mathbf {x}, \\&\bar{f}_{21}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 \\ &{} &{} \theta &{} \theta &{} 0 &{} \theta \\ &{} &{} &{} 1 &{} \theta ^{2} &{} 1 \\ &{} &{} &{} &{} \theta ^{2} &{} \theta ^{2} \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \qquad \bar{f}_{22}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 1 &{} 0 &{} \theta ^{2} &{} 0 &{} \theta \\ &{} 1 &{} \theta ^{2} &{} 0 &{} \theta &{} 0 \\ &{} &{} 0 &{} 1 &{} 0 &{} 1 \\ &{} &{} &{} \theta ^{2} &{} 1 &{} 0 \\ &{} &{} &{} &{} 0 &{} 1 \\ &{} &{} &{} &{} &{} \theta 1 \end{pmatrix}}\mathbf {x}, \\&\bar{g}_{11}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 0 &{} 0 &{} \theta ^{2} &{} \theta &{} \theta &{} \theta ^{2} \\ &{} 0 &{} 1 &{} \theta &{} 1 &{} \theta ^{2} \\ &{} &{} \theta ^{2} &{} 1 &{} 0 &{} 0 \\ &{} &{} &{} 1 &{} 0 &{} 1 \\ &{} &{} &{} &{} \theta &{} 1 \\ &{} &{} &{} &{} &{} 1 \end{pmatrix}}\mathbf {x}, \qquad \bar{g}_{12}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} 1 &{} \theta ^{2} &{} 1 &{} \theta \\ &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ &{} &{} \theta ^{2} &{} \theta &{} 0 &{} 1 \\ &{} &{} &{} \theta &{} 1 &{} 0 \\ &{} &{} &{} &{} \theta &{} \theta ^{2} \\ &{} &{} &{} &{} &{} \theta ^{2} \end{pmatrix}}\mathbf {x}, \\&\bar{g}_{21}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ &{} 0 &{} \theta ^{2} &{} 0 &{} \theta &{} 0 \\ &{} &{} 1 &{} 0 &{} 0 &{} 1 \\ &{} &{} &{} \theta &{} 1 &{} 1 \\ &{} &{} &{} &{} 1 &{} 0 \\ &{} &{} &{} &{} &{} \theta ^{2} \end{pmatrix}}\mathbf {x}, \qquad \bar{g}_{22}(\mathbf {x})={}^{t}\!\mathbf {x}{\begin{pmatrix} 1 &{} 1 &{} \theta &{} \theta &{} \theta ^{2} &{} \theta ^{2} \\ &{} 0 &{} \theta ^{2} &{} \theta ^{2} &{} \theta &{} \theta \\ &{} &{} \theta &{} \theta &{} 0 &{} 1 \\ &{} &{} &{} \theta ^{2} &{} 1 &{} 0 \\ &{} &{} &{} &{} \theta ^{2} &{} \theta ^{2} \\ &{} &{} &{} &{} &{} \theta \end{pmatrix}}\mathbf {x}. \end{aligned}$$

Then the problem of recovering \(S_{1},S_{2},T_{1},T_{2}\) with (8) is reduced to the problem of recovering \(\bar{S}_{1}=Q_{6}^{-1}\circ S_{1}\circ Q_{6}\), \(\bar{S}_{2}=Q_{6}^{-1}\circ S_{2}\circ Q_{6}\), \(\bar{T}_{1}=Q_{2}^{-1}\circ T_{1}\circ Q_{2}\), \(\bar{T}_{2}=Q_{2}^{-1}\circ T_{2}\circ Q_{2}\) satisfying

$$\begin{aligned} \begin{aligned} \begin{pmatrix}\bar{g}_{11}(\mathbf {x}) \\ \bar{g}_{12}(\mathbf {x})\end{pmatrix} =&\bar{T}_{1}\begin{pmatrix}\bar{f}_{11}(\bar{S}_{1}(\mathbf {x})) \\ \bar{f}_{12}(\bar{S}_{1}(\mathbf {x}))\end{pmatrix} +\bar{T}_{2}\begin{pmatrix}\bar{f}_{21}(\bar{S}_{2}(\mathbf {x})) \\ \bar{f}_{22}(\bar{S}_{2}(\mathbf {x}))\end{pmatrix},\\ \begin{pmatrix}\bar{g}_{21}(\mathbf {x}) \\ \bar{g}_{22}(\mathbf {x})\end{pmatrix} =&\bar{T}_{1}\begin{pmatrix}\bar{f}_{21}(\bar{S}_{1}(\mathbf {x})) \\ \bar{f}_{22}(\bar{S}_{1}(\mathbf {x}))\end{pmatrix} +\bar{T}_{2}\begin{pmatrix}\bar{f}_{11}(\bar{S}_{2}(\mathbf {x})) \\ \bar{f}_{12}(\bar{S}_{2}(\mathbf {x}))\end{pmatrix}. \end{aligned} \end{aligned}$$
(9)

Due to Lemma 2, we see that \(\bar{S}_{1},\bar{S}_{2},\bar{T}_{1},\bar{T}_{2}\) are written by

$$\begin{aligned} \bar{S}_{1}=&\mathrm {diag}\left( \begin{pmatrix}1 &{} s_{12}^{(1)} \\ {} &{} 1 \end{pmatrix}, \begin{pmatrix}s_{21}^{(1)} &{} s_{22}^{(1)} \\ {} &{} s_{21}^{(1)} \end{pmatrix}, \begin{pmatrix}s_{31}^{(1)} &{} s_{32}^{(1)} \\ {} &{} s_{31}^{(1)} \end{pmatrix} \right) ,\\ \bar{S}_{2}=&\mathrm {diag}\left( \begin{pmatrix}1 &{} s_{12}^{(2)} \\ {} &{} 1 \end{pmatrix}, \begin{pmatrix}s_{21}^{(2)} &{} s_{22}^{(2)} \\ {} &{} s_{21}^{(2)} \end{pmatrix}, \begin{pmatrix}s_{31}^{(2)} &{} s_{32}^{(2)} \\ {} &{} s_{31}^{(2)} \end{pmatrix} \right) , \\ \bar{T}_{1}=&\begin{pmatrix} t_{1}^{(1)} &{} t_{2}^{(1)} \\ {} &{} t_{1}^{(1)}\end{pmatrix},\qquad \bar{T}_{2}=\begin{pmatrix} t_{1}^{(2)} &{} t_{2}^{(2)} \\ {} &{} t_{1}^{(2)}\end{pmatrix}. \end{aligned}$$

We first study the coefficients of \(x_{1}^{2}\) in \(\bar{g}_{12},\bar{g}_{22}\). The relation (9) gives the following equations.

$$\begin{aligned} \begin{pmatrix} 1 \\ 1 \end{pmatrix} =\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} t_{1}^{(1)} \\ t_{1}^{(2)} \end{pmatrix}. \end{aligned}$$

We then get \(t_{1}^{(1)}=1\) and \(t_{1}^{(2)}=1\). Similarly, from the coefficients of \(x_{1}^{2}\) in \(\bar{g}_{11},\bar{g}_{21}\), we have

$$\begin{aligned} \begin{pmatrix} 0 \\ 1 \end{pmatrix} =\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} t_{2}^{(1)} \\ t_{2}^{(2)} \end{pmatrix} +\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} t_{1}^{(1)} \\ t_{1}^{(2)} \end{pmatrix}. \end{aligned}$$

From the equations above, we obtain \(t_{2}^{(1)}=1\) and \(t_{2}^{(2)}=0\). We thus have \(T_{1},T_{2}\) as

$$\begin{aligned} T_{1}=Q_{2}\begin{pmatrix} 1 &{} 1 \\ {} &{} 1 \end{pmatrix}Q_{2}^{-1} =J_{2},\qquad T_{2}=Q_{2}\begin{pmatrix} 1 &{} \\ &{} 1\end{pmatrix}Q_{2}^{-1} =I_{2}. \end{aligned}$$
(10)

Next, we study the coefficient of \(x_{1}x_{3}\) in \(\bar{g}_{12},\bar{g}_{22}\). From (9) and (10), we have

$$\begin{aligned} \begin{pmatrix} 1 \\ \theta \end{pmatrix} =\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} s_{21}^{(1)} \\ s_{21}^{(2)} \end{pmatrix}. \end{aligned}$$

We then get \(s_{21}^{(1)}=1\), \(s_{21}^{(2)}=\theta \). Similarly, the following equations are derived from the coefficients of \(x_{1}x_{4}\), \(x_{1}x_{5}\) and \(x_{1}x_{6}\) in \(\bar{g}_{12},\bar{g}_{22}\).

$$\begin{aligned} \begin{pmatrix} \theta ^{2} \\ \theta \end{pmatrix} =&\begin{pmatrix} \theta ^{2} &{} \theta ^{2} \\ \theta ^{2} &{} \theta ^{2} \end{pmatrix} \begin{pmatrix} s_{21}^{(1)} \\ s_{21}^{(2)} \end{pmatrix} +\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} s_{22}^{(1)} \\ s_{22}^{(2)} \end{pmatrix},\\ \begin{pmatrix} 1 \\ \theta ^{2} \end{pmatrix} =&\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} s_{31}^{(1)} \\ s_{31}^{(2)} \end{pmatrix}, \\ \begin{pmatrix} \theta \\ \theta ^{2} \end{pmatrix} =&\begin{pmatrix} \theta &{} \theta \\ \theta &{} \theta \end{pmatrix} \begin{pmatrix} s_{31}^{(1)} \\ s_{31}^{(2)} \end{pmatrix} +\begin{pmatrix} 1 &{} 0 \\ 0 &{} 1 \end{pmatrix} \begin{pmatrix} s_{32}^{(1)} \\ s_{32}^{(2)} \end{pmatrix}. \\ \end{aligned}$$

Then we get \(s_{22}^{(1)}=1\), \(s_{22}^{(2)}=0\), \(s_{31}^{(1)}=1\), \(s_{31}^{(2)}=\theta ^{2}\), \(s_{32}^{(1)}=1\) and \(s_{32}^{(2)}=0\). To recover the remaining parameters \(s_{12}^{(1)},s_{12}^{(2)}\), we study the coefficients of \(x_{2}^{2}\) in \(\bar{g}_{12},\bar{g}_{22}\) and have

$$\begin{aligned} 0=s_{12}^{(1)}{}^{2}+s_{12}^{(2)}, \qquad 0=s_{12}^{(1)}+s_{12}^{(2)}{}^{2}. \end{aligned}$$

Since \(s_{12}^{(1)},s_{12}^{(2)}\in \mathbf{F}_{2}\), the solution of the equations above is \(s_{12}^{(1)}=s_{12}^{(2)}\). To fix \(s_{12}^{(1)},s_{12}^{(2)}\) uniquely, we further study the coefficients \(x_{2}x_{3}\) in \(\bar{g}_{12},\bar{g}_{22}\) and have the equations

$$\begin{aligned} 1=s_{12}^{(1)}s_{21}^{(1)}+\theta ^{2}s_{21}^{(2)}, \qquad \theta ^{2}=\theta ^{2}s_{21}^{(1)}+s_{12}^{(2)}s_{21}^{(2)}. \end{aligned}$$

Since \(s_{21}^{(1)}=1\), \(s_{21}^{(2)}=\theta \), we obtain \(s_{12}^{(1)}=s_{12}^{(2)}=0\). We thus conclude that

$$\begin{aligned} \begin{aligned} S_{1}=&Q_{6}\cdot \mathrm {diag}\left( \begin{pmatrix} 1 &{} 0 \\ {} &{} 1 \end{pmatrix}, \begin{pmatrix} 1 &{} 1 \\ {} &{} 1 \end{pmatrix}, \begin{pmatrix} 1 &{} 1 \\ {} &{} 1 \end{pmatrix} \right) Q_{6}^{-1}=I_{6}+J_{6}+J_{6}^{2}+J_{6}^{4}+J_{6}^{5},\\ S_{2}=&Q_{6}\cdot \mathrm {diag}\left( \begin{pmatrix} 1 &{} 0 \\ {} &{} 1 \end{pmatrix}, \begin{pmatrix} \theta &{} 0 \\ {} &{} \theta \end{pmatrix}, \begin{pmatrix} \theta ^{2} &{} 0 \\ {} &{} \theta ^{2} \end{pmatrix} \right) Q_{6}^{-1}=J_{6}^{4}. \end{aligned} \end{aligned}$$
(11)

The solution of this BIPC problem is given by (10) and (11).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashimoto, Y. (2021). Solving the Problem of Blockwise Isomorphism of Polynomials with Circulant Matrices. In: Nakanishi, T., Nojima, R. (eds) Advances in Information and Computer Security. IWSEC 2021. Lecture Notes in Computer Science(), vol 12835. Springer, Cham. https://doi.org/10.1007/978-3-030-85987-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85987-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85986-2

  • Online ISBN: 978-3-030-85987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation