Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network

  • Chapter
  • First Online:
Coronavirus Therapeutics – Volume I

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARDS:

Acute Respiratory Distress Syndrome

Covid-19:

Coronavirus Disease of 2019

DMV:

Double Membraned Vesicles

ERAD:

Endoplasmic Reticulum Associated Protein Degradation

ER-UPR:

Endoplasmic Reticulum Unfolded Protein Response

Hsp:

Heat Shock Protein

HSF1:

Heat Shock Factor 1

MERS-CoV:

Middle East Respiratory Syndrome Coronavirus

RdRp:

RNA-dependent RNA polymerase

RT-PCR:

Reverse Transcription-Polymerase Chain Reaction

SARS-CoV-2:

Severe Acute Respiratory Syndrome Coronavirus 2

UPS:

Ubiquitin Proteasome System

References

  • Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ (2013) Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio 4

    Google Scholar 

  • Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC (2005) The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 79:15189–15198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra J, Tripathi S, Kumar A et al (2016) Human heat shock protein 40 (Hsp40/DnaJB1) promotes influenza a virus replication by assisting nuclear import of viral ribonucleoproteins. Sci Rep 6:19063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechill J, Chen Z, Brewer JW, Baker SC (2008) Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression. J Virol 82:4492–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beigel JH, Tomashek KM, Dodd LE et al (2020) Remdesivir for the treatment of Covid-19 - preliminary report. N Engl J Med

    Google Scholar 

  • Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4:1011–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benvenuto D, Angeletti S, Giovanetti M et al (2020) Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Infect 81:e24–e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonam SR, Muller S, Bayry J, Klionsky DJ (2020) Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine. Autophagy

    Google Scholar 

  • Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, ** DY (2006) Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 80:9279–9287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PM, Gombart ZJ, Chen JW (2011) Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration. Cell Biosci 1:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Wong R, Soo YO et al (2005) Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 24:44–46

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Barry SP, Roth RJ et al (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A 103:2274–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claverie JM (2020) A putative role of de-mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 protein in the cytokine storm syndrome of COVID-19. Viruses 12

    Google Scholar 

  • Coronaviridae Study Group of the International Committee on Taxonomy of, V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544

    Article  CAS  Google Scholar 

  • Cottam EM, Whelband MC, Wileman T (2014) Coronavirus NSP6 restricts autophagosome expansion. Autophagy 10:1426–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Haan CA, Reggiori F (2008) Are nidoviruses hijacking the autophagy machinery? Autophagy 4:276–279

    Article  PubMed  Google Scholar 

  • DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM et al (2011) Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 7:e1002315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas B, Laude H (1990) Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding N, Zhao K, Lan Y et al (2017) Induction of atypical autophagy by porcine Hemagglutinating encephalomyelitis virus contributes to viral replication. Front Cell Infect Microbiol 7:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly CA, Ghani AC, Leung GM et al (2003) Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361:1761–1766

    Article  PubMed  PubMed Central  Google Scholar 

  • Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E (2020) A comprehensive review of COVID-19 characteristics. Biol Proced Online 22:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16:70–78

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Luo H (2006) The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol 84:5–14

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC (2010) Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol 21:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassen NC, Niemeyer D, Muth D et al (2019) SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-coronavirus infection. Nat Commun 10:5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    Article  CAS  PubMed  Google Scholar 

  • Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Hu H, Chen F et al (2016) iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 130:65–75

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhang M, Zhang X et al (2017) Porcine epidemic diarrhea virus induces autophagy to benefit its replication. Viruses 9

    Google Scholar 

  • Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28:3–13

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393

    Article  CAS  PubMed  Google Scholar 

  • Hirayama E, Atagi H, Hiraki A, Kim J (2004) Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. J Virol 78:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–80 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung IF, Lung KC, Tso EY et al (2020) Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395:1695–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Pan J, Chen Y et al (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 79:5288–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Tanaka N, Tanaka Y et al (2007) Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol 81:8722–8729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson MK, Ploegh HL (2009) Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Yang Y (2020) The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol 20:339–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XS, Tang LY, Dai J et al (2005) Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches: implications for cellular responses to virus infection. Mol Cell Proteomics 4:902–913

    Article  CAS  PubMed  Google Scholar 

  • Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24:S223–S227. discussion S26

    Article  PubMed  Google Scholar 

  • Kanjanahaluethai A, Chen Z, Jukneliene D, Baker SC (2007) Membrane topology of murine coronavirus replicase nonstructural protein 3. Virology 361:391–401

    Article  CAS  PubMed  Google Scholar 

  • Killerby ME, Biggs HM, Haynes A et al (2018) Human coronavirus circulation in the United States 2014–2017. J Clin Virol 101:52–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindrachuk J, Ork B, Hart BJ et al (2015) Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 59:1088–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoops K, Kikkert M, Worm SH et al (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korennykh A, Walter P (2012) Structural basis of the unfolded protein response. Annu Rev Cell Dev Biol 28:251–277

    Article  CAS  PubMed  Google Scholar 

  • Krahling V, Stein DA, Spiegel M, Weber F, Muhlberger E (2009) Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J Virol 83:2298–2309

    Article  PubMed  CAS  Google Scholar 

  • Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774

    Article  CAS  PubMed  Google Scholar 

  • Lan J, Ge J, Yu J et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220

    Article  CAS  PubMed  Google Scholar 

  • Law HK, Cheung CY, Ng HY et al (2005) Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106:2366–2374

    Article  CAS  PubMed  Google Scholar 

  • Lee YR, Lei HY, Liu MT et al (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX (2013) Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J Virol 87:8124–8134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Menard R (2005) The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol 79:15199–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R (2007) Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys 466:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsitch M, Cohen T, Murray M, Levin BR (2007) Antiviral resistance and the control of pandemic influenza. PLoS Med 4:e15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lokugamage KG, Narayanan K, Huang C, Makino S (2012) Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol 86:13598–13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XZ, Bartczak A, Zhang J et al (2010) Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J Virol 84:12419–12428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahase E (2020) Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ 368:m641

    Article  PubMed  Google Scholar 

  • Mauthe M, Orhon I, Rocchi C et al (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14:1435–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memish ZA, Al-Tawfiq JA, Assiri A (2013a) Hospital-associated Middle East respiratory syndrome coronavirus infections. N Engl J Med 369:1761–1762

    Article  CAS  PubMed  Google Scholar 

  • Memish ZA, Zumla AI, Assiri A (2013b) Middle East respiratory syndrome coronavirus infections in health care workers. N Engl J Med 369:884–886

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutzouris JP, Che W, Ramsay EE et al (2010) Proteasomal inhibition upregulates the endogenous MAPK deactivator MKP-1 in human airway smooth muscle: mechanism of action and effect on cytokine secretion. Biochim Biophys Acta 1803:416–423

    Article  CAS  PubMed  Google Scholar 

  • Nabar NR, Kehrl JH (2017) The transcription factor EB links cellular stress to the immune response. Yale J Biol Med 90:301–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K, Lokugamage KG, Makino S (2016) Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res 96:165–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nal B, Chan C, Kien F et al (2005) Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 86:1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Oostra M, te Lintelo EG, Deijs M, Verheije MH, Rottier PJ, de Haan CA (2007) Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. J Virol 81:12323–12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21:719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo J, Shukla AM, Chamarthi G, Gupte A (2020) The journey of remdesivir: from Ebola to COVID-19. Drugs Context 9

    Google Scholar 

  • Peng Q, Peng R, Yuan B et al (2020) Structural and biochemical characterization of the nsp12-nsp7-nsp8 Core polymerase complex from SARS-CoV-2. Cell Rep 31:107774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AM, Gonzalez LO, Nekongo EE et al (2017) Host proteostasis modulates influenza evolution. Elife 6

    Google Scholar 

  • Phillips AM, Doud MB, Gonzalez LO et al (2018a) Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin. Elife:7

    Google Scholar 

  • Phillips AM, Ponomarenko AI, Chen K et al (2018b) Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones. PLoS Biol 16:e3000008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR (2004) Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136–10141

    Article  CAS  PubMed  Google Scholar 

  • Raaben M, Posthuma CC, Verheije MH et al (2010) The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J Virol 84:7869–7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadan N, Shaib H (2019) Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs 9:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappe JCF, de Wilde A, Di H et al (2018) Antiviral activity of K22 against members of the order Nidovirales. Virus Res 246:28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reggiori F, Monastyrska I, Verheije MH et al (2010) Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth-Cross JK, Bender SJ, Weiss SR (2008) Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J Virol 82:9829–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu R, Kaushik S, Clement CC et al (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Ackermann K, Stuart M et al (2012) Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J Virol 86:10112–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi CS, Nabar NR, Huang NN, Kehrl JH (2019) SARS-coronavirus open Reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Dis 5:101

    Article  CAS  Google Scholar 

  • Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J et al (2006) Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80:5927–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stertz S, Reichelt M, Spiegel M et al (2007) The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361:304–315

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Shi H, Guo D et al (2015) Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. J Virol Methods 218:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung SC, Chao CY, Jeng KS, Yang JY, Lai MM (2009) The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology 387:402–413

    Article  CAS  PubMed  Google Scholar 

  • Tan YJ, Lim SG, Hong W (2006) Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 72:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versteeg GA, van de Nes PS, Bredenbeek PJ, Spaan WJ (2007) The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations. J Virol 81:10981–10990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2020) Fast identification of possible drug treatment of coronavirus Disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model

    Google Scholar 

  • Wang X, Liao Y, Yap PL, Png KJ, Tam JP, Liu DX (2009) Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells. J Virol 83:12462–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cao R, Zhang H et al (2020a) The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 6:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang D, Du G et al (2020b) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395:1569–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  CAS  PubMed  Google Scholar 

  • **a X, Li K, Wu L et al (2020) Improved clinical symptoms and mortality on severe/critical COVID-19 patients utilizing convalescent plasma transfusion. Blood

    Google Scholar 

  • Xu X, Han M, Li T et al (2020) Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 117:10970–10975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZY, Huang Y, Ganesh L et al (2004) pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78:5642–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zheng Y, Gou X et al (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Hauns K, Langland JO, Jacobs BL, Hogue BG (2007) Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virol 81:2554–2563

    Article  CAS  PubMed  Google Scholar 

  • Yeung YS, Yip CW, Hon CC et al (2008) Transcriptional profiling of Vero E6 cells over-expressing SARS-CoV S2 subunit: insights on viral regulation of apoptosis and proliferation. Virology 371:32–43

    Article  CAS  PubMed  Google Scholar 

  • Yu GY, Lai MM (2005) The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79:644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan W, Liu S, Lu L, Feng J, He X (2020) Clinical interventions for severe and critical COVID-19: what are the options. Am J Transl Res 12:2110–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Thackray LB, Miller BC et al (2007) Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3:581–585

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Rose KM, Elliott R, Van Rooijen N, Weiss SR (2011) Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol 85:10058–10068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Jha BK, Wu A et al (2012) Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11:607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Guo F, Comunale MA et al (2015) Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother 59:206–216

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zust R, Cervantes-Barragan L, Habjan M et al (2011) Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

KM acknowledges the funding from Department of Biotechnology (DBT), Government of India, grant number (BT/PR28386/BRB/10/1671/2018) and Science and Engineering Research Board (SERB), Government of India, for Core Research Grant (SERB/CRG/2019/006281) and SNU core funding. PM acknowledges SERB NPDF grant (SERB/F/4161/2018-2019). RS acknowledges ICMR SRF grant (2019-6710/CMB/BMS) and SNU PhD fellowship. MA and MPJ acknowledge SNU PhD fellowship.

Conflict of Interest

There is no conflict of interest with the contents of the book chapter.

Ethical Approval for Studies Involving Humans

This chapter does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This chapter does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koyeli Mapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M., Rajurkar, J., Majumder, P., Jha, M.P., Sarkar, R., Mapa, K. (2021). Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network. In: Asea, A.A.A., Kaur, P. (eds) Coronavirus Therapeutics – Volume I. Advances in Experimental Medicine and Biology, vol 1352. Springer, Cham. https://doi.org/10.1007/978-3-030-85109-5_8

Download citation

Publish with us

Policies and ethics

Navigation