Little Bustard Population Dynamics

  • Chapter
  • First Online:
Little Bustard: Ecology and Conservation

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 5))

  • 199 Accesses

Abstract

Little bustard populations have declined precipitously in many regions and countries of the western Palearctic, but they can also grow quite rapidly when conditions are favourable, reaching high densities from very low numbers in relatively few years. A few documented cases indeed indicate a marked exponential growth phase before they level off due to density-dependent effects. Population decreases also tend to be exponential rather than linear or slowly accelerated, for example when environmental conditions become adverse, which is a challenge for conservation since declines are usually faster than expected by managers, particularly in their initial stages. Thus, although the little bustard is a large and fairly long-lived bird, its capacity for fast recovery when favourable conditions are met makes the species a composite in the conceptual framework of K-r selection, showing both K- and r-selected traits. The population viability analyses (PVA) reviewed in this chapter indicate that little bustard long-term population persistence requires adult survival to be higher than 80%, fecundity higher than 0.9 fledglings per female, and sex ratio to stay between 0.3 and 0.5 males/total adult population. Population size should be also over 20 individuals, as density-dependent effects seem to be critical in little bustard population dynamics, likely in relation to lekking behaviour and constraints. For instance, a lek size below two males results in strong breeding depression, leading to increased risk of extinction in small populations due to the Allee effect. However, lekking also allows bustard populations to tolerate relatively small male numbers. PVAs further illustrate the relevance of connectivity in the species’ dynamics for both local populations and metapopulations. The latter seems to be adequately described by classic source-sink metapopulation models. Simulations also highlight the importance of guaranteeing a secure landscape matrix for dispersing birds, given the impact of mortality during the dispersal process. Little bustard population growth rates are highly sensitive to land use changes. Moreover, the impact of land management on little bustard breeding success and thus population growth may be modified by weather, particularly in Mediterranean regions. Consequently, conservation management should be adapted to forecasted climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso JC, Martin CA, Alonso JA, Palacin C, Magaña M, Lane SJ (2004) Distribution dynamics of a great bustard metapopulation throughout a decade: influence of conspecific attraction and recruitment. Biodivers Conserv 13:1659–1674

    Google Scholar 

  • Badenhausser I, Amouroux P, Lerin J, Bretagnolle V (2009) Acridid (Orthoptera: Acrididae) abundance in Western European grasslands: sampling methodology and temporal fluctuations. J of Appl Entomol 133:720–732

    Google Scholar 

  • Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491

    Google Scholar 

  • Bretagnolle V, Inchausti P (2005) Modelling population reinforcement at a large spatial scale as a conservation strategy for the declining little bustard (Tetrax tetrax) in agricultural habitats. Anim Conserv 8:59–68

    Google Scholar 

  • Bretagnolle V, Villers A, Denonfoux L, Cornulier T, Inchausti P, Badenhausser I (2011) Rapid recovery of a depleted population of little bustards Tetrax Tetrax following provision of alfalfa through an agri-environment scheme. Ibis 153:4–13

    Google Scholar 

  • Bretagnolle V, Denonfoux L, Villers A (2018) Are farming and birds irreconcilable? A 21-year study of bustard nesting ecology in intensive agroecosystems. Biol Conserv 228:27–35

    Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. TREE 14:405–410

    CAS  PubMed  Google Scholar 

  • Dale S (2001) Female-biased, low-female recruitment, unpaired males, and the extinction of small and isolated populations. Oikos 92:344–356

    Google Scholar 

  • De Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487

    Google Scholar 

  • Delgado MP, Morales MB, Traba J, García de la Morena EL (2009) Determining the effects of habitat management and climate on the population trends of a declining steppe bird. Ibis 151:440–451

    Google Scholar 

  • Delgado MP, Traba J, García de la Morena EL, Morales MB (2010) Habitat selection and density-dependent relationships in spatial occupancy by male Little Bustards Tetrax tetrax. Ardea 98:185–194

    Google Scholar 

  • Delibes M, Ferreras P, Gaona P (2001) Attractive sinks, or how individual behavioural decisions determine source–sink dynamics. Ecol Lett 4:401–403

    Google Scholar 

  • Devoucoux P (2014) Conséquences et impacts prévisibles d’une perte d’habitat majeure sur une espèce menacée aux exigences écologiques complexes : effets de la mise en place du contournement ferroviaire à grande vitesse Nîmes-Montpellier sur la dynamique de la population d’outarde canepetière des Costières de Nîmes. Dissertation, University of Poitiers

    Google Scholar 

  • Donald PF, Evans AD, Muirhead LB, Buckingham DL (2002) Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests on lowland farmland. Ibis 144:652–664

    Google Scholar 

  • Faria N, Morales MB (2017) Population productivity and late breeding habitat selection by the threatened little bustard: the importance of grassland management. Bird Conserv Int. https://doi.org/10.1017/S0959270917000387

  • Faria N, Morales MB, Rabaca JE (2016) Exploring nest destruction and bird mortality in mown Mediterranean dry grasslands: an increasing threat to grassland bird conservation. Eur J Wildl Res 62:663–670

    Google Scholar 

  • Fryxell JM, Sinclair ARE, Caughley G (2014) Wildlife ecology, conservation, and management, 3rd edn. Wiley, Oxford

    Google Scholar 

  • García de la Morena EL, Bota G, Mañosa S, Morales MB (2018) El sisón común en España. II Censo Nacional (2016). SEO/Birdlife, Madrid

    Google Scholar 

  • Grüebler MU, Schuler H, Horch P, Spaar R (2012) The effectiveness of conservation measures to enhance nest survival in a meadow bird suffering from anthropogenic nest loss. Biol Conserv 14:197–203

    Google Scholar 

  • Hanski I (1999) Metapopulation dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Höglund J, Alatalo RV (1995) Leks. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Inchausti P, Bretagnolle V (2005) Predicting short-term extinction risk for the declining Little Bustard (Tetrax tetrax) in intensive agricultural habitats. Biol Conserv 122:375–384

    Google Scholar 

  • Jiguet F (2002) Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49:105–109

    Google Scholar 

  • Jiguet F, Bretagnolle V (2001) Courtship behaviour in a lekking species: individual variations and settlement tactics in male little bustard. Behav Process 55:107–118

    CAS  Google Scholar 

  • Jiguet F, Bretagnolle V (2006) Manipulating lek size and composition using decoys: an experimental investigation of lek evolution models. Am Nat 168:758–768

    PubMed  Google Scholar 

  • Jiguet F, Bretagnolle V (2014) Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav Process. https://doi.org/10.1016/j.beproc.2014.01.008

  • Jiguet F, Ollivier D (2002) Male phenotypic repeatability in the threatened Little Bustard Tetrax tetrax: a tool to estimate turnover and dispersal. Ardea 90:43–50

    Google Scholar 

  • Jiguet F, Arroyo B, Bretagnolle V (2000) Lek mating systems: a case study in the Little Bustard Tetrax tetrax. Behav Process 51:63–82

    CAS  Google Scholar 

  • Jolivet C, Bretagnolle V (2002) L’outarde canepetière en France : évolution récente des populations, bilan des mesures de sauvegarde et perspectives d’avenir. Alauda 70(2002):93–96

    Google Scholar 

  • Kershner EL, Bollinger EK (1996) Reproductive success of grassland birds at East-Central Illinois airports. Am Midl Nat 136:358–366

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Marcelino J, Moreira F, Mañosa S, Cuscó F, Morales MB, García de la Morena EL, Bota G, Palmeirim JM, Silva J (2017) Tracking data of the little bustard (Tetrax tetrax) in Iberia shows high anthropogenic mortality. Bird Conserv Int. https://doi.org/10.1017/S095927091700051X

  • Morales MB, Jiguet F, Arroyo B (2001) Exploded leks: what bustards can teach us. Ardeola 48:85–98

    Google Scholar 

  • Morales MB, Bretagnolle V, Arroyo B (2005a) Viability of the endangered little bustard Tetrax tetrax population of western France. Biodivers Conserv 14:3135–3150

    Google Scholar 

  • Morales MB, García JT, Arroyo B (2005b) Can landscape composition changes predict spatial and annual variation of little bustard male abundance? Anim Conserv 8:167–174

    Google Scholar 

  • Morales MB, García de la Morena EL, Delgado MP, Traba J (2008a) Tendencia reciente y viabilidad futura de las poblaciones de sisón común Tetrax tetrax en la Comunidad de Madrid. Anu Ornitol Madr 11:42–55

    Google Scholar 

  • Morales MB, Traba J, Carriles E, Delgado MP, García de la Morena EL (2008b) Sexual differences in microhabitat selection of breeding Little Bustards Tetrax tetrax: ecological segregation based on vegetation structure. Acta Oecol 34:345–353

    Google Scholar 

  • Morales MB, Traba J, Delgado MP, García de la Morena EL (2013) The use of fallows by nesting little bustard Tetrax tetrax females: implications for conservation in mosaic cereal farmland. Ardeola 60:85–97

    Google Scholar 

  • Morales MB, Casas F, García de la Morena EL, Ponjoan A, Calabuig G, Martínez-Padilla J, García JT, Mañosa S, Viñuela J, Bota G (2014) Density dependence and habitat quality modulate the intensity of display territory defence in an exploded lekking species. Behav Ecol Sociobiol 68:1493–1504

    Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Pianka ER (1970) On r- and k-selection. Am Nat 104:592–597

    Google Scholar 

  • Pinto M, Rocha P, Moreira F (2005) Long-term trends in great bustard (Otis tarda) populations in Portugal suggest concentration in single high quality area. Biol Conserv 124:415–423

    Google Scholar 

  • Poulsen JG, Sotherton NW, Aebischer NJ (1998) Comparative nesting and feeding ecology of skylarks Alauda arvensis on arable farmland in southern England with special reference to set-aside. J Appl Ecol 35:131–147

    Google Scholar 

  • Reid N, McDonald RA, Montgomery WI (2010) Homogeneous habitat can meet the discrete and varied resource requirements of hares but may set an ecological trap. Biol Conserv 143:1701–1706

    Google Scholar 

  • Robertson B, Hutto R (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085

    PubMed  Google Scholar 

  • Silva JP, Estanque B, Moreira F, Palmeirim JM (2014) Population density and use of grasslands by female Little Bustards during lek attendance, nesting and brood-rearing. J Ornithol 155:53–63

    Google Scholar 

  • Silva JP, Catry I, Palmeirim JM, Moreira F (2015) Freezing heat: thermally imposed constraints on the daily activity patterns of a free-ranging grassland bird. Ecosphere 6:article number 119. https://doi.org/10.1890/ES14-00454.1

    Article  Google Scholar 

  • Silva JP, Correia R, Alonso H, Martins RC, D’Amico M, Delgado A, Sampaio H, Godinho C, Moreira F (2018) EU protected area network did not prevent a country wide population decline in a threatened grassland bird. PeerJ 6:e4284. https://doi.org/10.7717/peerj.4284

    Article  PubMed  PubMed Central  Google Scholar 

  • Suvorov P, Svobodová J (2012) The occurrence of ecological traps in bird populations: is our knowledge sufficient? A review. J Landsc Ecol 5:36–56

    Google Scholar 

  • Traba J, Morales MB (2019) The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci Rep 9:9473. https://doi.org/10.1038/s41598-019-45854-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traba J, Bota G, Mañosa S, García de la Morena EL, Morales MB (2020) Análisis de viabilidad de la población de sisón común (Tetrax tetrax) en España. Anexo a la solicitud de recatalogación del sisón común en el Catálogo Español de Especies Amenazadas. Unpublished report

    Google Scholar 

  • Villers A (2010) Ecologie spatiale, processus comportementaux et dynamiques des populations d’une espèce menacée, l’Outarde Canepetière. PhD Thesis. University of Paris 6, Paris

    Google Scholar 

  • Wagner RH, Danchin E (2003) Conspecific copying: a general mechanism of social aggregation. Anim Behav 65:405–408

    Google Scholar 

  • Widemo F, Owens PF (1995) Lek size, male mating skew and the evolution of lekking. Nature 373:148–151

    CAS  Google Scholar 

  • Wolff A, Paul J, Martin JL, Bretagnolle V (2001) The benefits of extensive agriculture to birds: the case of the little bustard. J Appl Ecol 38:963–975

    Google Scholar 

Download references

Acknowledgements

We are thankful to Alex Villers for reviewing and commenting on initial versions of the chapter. The comments and suggestions by Juan Traba further improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel B. Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales, M.B., Bretagnolle, V. (2022). Little Bustard Population Dynamics. In: Bretagnolle, V., Traba, J., Morales, M.B. (eds) Little Bustard: Ecology and Conservation. Wildlife Research Monographs, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-84902-3_11

Download citation

Publish with us

Policies and ethics

Navigation