Part of the book series: Green Energy and Technology ((GREEN))

  • 665 Accesses

Abstract

Photovoltaic modules are subject to harsh outdoor conditions and thus directly affected by atmospheric heat and subsequent temperature rise. The temperature increase on the panel surface impacts its performance and mechanical properties. This chapter examines the impact of heat on the parameters associated with output power, performance and structural properties of a silicon photovoltaic module. Photovoltaic modules are one of the promising solutions to the global energy crisis. They are considered to be non-polluting, renewable and silent form of energy. They make use of abundantly and freely available sunlight for the generation of electric power. The high operating temperature of PV cells will have adverse effects on the generation efficiency and performance. To improve system reliability and performance, efficient PV module cooling methods have to be employed. The most common methods are thermoelectric cooling, forced and natural air cooling, cooling with phase change materials, heat pipe cooling and hydraulic cooling. This chapter discusses different ways of water cooling employed in PV modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shan F, Tang F, Cao L, Fang G (2014) Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different Configurations. Energy Convers Manag 87:778–86

    Google Scholar 

  2. Chandrasekar M, Suresh S, Senthilkumar T, Ganesh KM (2013) Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manage 71:43–50

    Article  Google Scholar 

  3. Kempe MD, Wohlgemuth JH (2013) Evaluation of temperature and humidity on PV module component degradation. In: 2013 IEEE 39th Photovoltaic specialists conference (PVSC), Tampa, FL, pp 0120–0125

    Google Scholar 

  4. Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87(2):365–379

    Article  Google Scholar 

  5. Zondag HA (2008) Flat-plate PV-Thermal collectors and systems-a review. Renew Sustain Energy Rev 12(4):891–959

    Article  Google Scholar 

  6. Notton G, Cristofari C, Mattei M, Poggi P (2005) Modelling of a double-glass photovoltaic module using finite differences. Appl Therm Eng 25:2854–2877

    Article  Google Scholar 

  7. Evans DL, Florschuetz LW (1977) Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Sol Energy 19:255–262

    Article  Google Scholar 

  8. Garg HP, Agarwal RK (1995) Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers Manage 36:87–99

    Article  Google Scholar 

  9. Luque A, Hegedus S (2003) Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp 296–297

    Google Scholar 

  10. Chander S, Purohit A, Sharma A, Arvind Nehra SP, Dhaka MS (2015) A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep 1:04–109

    Google Scholar 

  11. Arjyadhara P, Ali SM, Chitralekha J (2013) Analysis of solar PV cell performance with changing irradiance and temperature. Int J Eng Comput Sci 2(1):214–220

    Google Scholar 

  12. Cai W, Chao F, Long TJ, **ong LD, Fu HS, Gang XZ (2012) The influence of environment temperatures on single crystalline and polycrystalline silicon solar cell performance. Sci China Phys Mech Astronomy 55:235–241

    Article  Google Scholar 

  13. Liao ZL, Ruan XB (2008) A new method on computing series resistance of silicon solar cells (in Chinese). Trans China Electrotechn Soc 23(5):88–92

    Google Scholar 

  14. Krustok J, Josepson R, Danilson M, Meissner D (2010) Temperature dependence of Cu2ZnSn(SexS1−x)4 monograin solar cells. Sol Energy 84(3):379–383

    Article  Google Scholar 

  15. Arora ND, Hauser JR (1982) Temperature dependence of silicon solar cell characteristics. Solar Energy Mater 6:151–158

    Article  Google Scholar 

  16. Schütze M, Junghänel M, Koentopp MB, Cwikla S, Friedrich S, Müller JW, Wawer P (2011) Laboratory study of potential induced degradation of silicon photovoltaic modules. In: 37th IEEE photovoltaic specialists conference seattle, WA, pp 000821–000826

    Google Scholar 

  17. **el S, Frank O, Winkler M, Daryan S, Geipel T,Hoehne H, Berghold J ( 2010) Potential Induced Degradation of solar cells and panels. In: Proceedings of the 35th IEEE photovoltaic specialists conference, Honolulu, HI, USA, pp 2817–2822

    Google Scholar 

  18. Berghold J, Frank O, Hoehne H, **el S, Richardson B, Winkler M (2010) Potential induced degradation of solar cells and panels. In: Proceedings of 25th European photovoltaic solar energy conference and exhibition, Valencia, Spain, pp 3753–3759

    Google Scholar 

  19. Vazquez M, Ignacio RS (2008) Photovoltaic module reliability model based on field degradation studies. Prog Photovoltaics Res Appl 16:419–433

    Article  Google Scholar 

  20. Munoz MA, Alonso-Garcia MC, Nieves V, Chenlo F (2011) Early degradation of silicon PV modules and guaranty conditions. Sol Energy 85:2264–2274

    Article  Google Scholar 

  21. Ndiaye A, Charki A, Kobi A, Kébé CMF, Ndiaye PA, Sambou V (2013) Degradations of silicon photovoltaic modules: a literature review. Sol Energy 96(2013):140–151

    Article  Google Scholar 

  22. Wohlgemuth JH, Kurtz S (2011) Reliability testing beyond qualification as a key component in photovoltaic’s progress toward grid parity. In: IEEE international reliability physics symposium monterey, California, 10–14 Apr 2011

    Google Scholar 

  23. Kaplanis S, Kaplani E (2011) Energy performance and degradation over 20 years performance of BP c-Si PV modules. Simul Model Pract Theory 19:1201–1211

    Article  Google Scholar 

  24. LEEE-TISO (2008) Link http://Ieee.dct.supsi.ch/PV/Results/Tested-modules.htm

  25. Changwoon H, Nochang P, Jaeseong J (2012) Lifetime prediction of silicon PV module ribbon wire in three local weathers. In: Photovoltaic module reliability workshop

    Google Scholar 

  26. Molenbroek E, Waddington DW, Emery KA (1991) Hot spot susceptibility and testing of PV modules. In: Conference record of the 22th IEEE, vol. 1, Las Vegas, pp 547–552

    Google Scholar 

  27. Stephan M, Thomas K, Wolfgang J, Hurbert F (2004) Quality testing for PV modules according to standards and performance control for supporting manufacturing. In: Proceedings of the 19th EU PVSEC, Paris

    Google Scholar 

  28. Lannoy A, Procaccia H (2005) Evaluation et maıˆtrise du vieillissement Industriel, Edition Lavoisier

    Google Scholar 

  29. Wohlgemuth JH, Cunningham DW, Nguyen AM, Miller J (2005) Long term reliability of PV modules. In: Proceedings of 20th European photovoltaic solar energy conference, pp 1942–1946

    Google Scholar 

  30. Jordan DC, Kurtz SR (2012) PV degradation risk, Technical Report in World Renewable Energy Forum

    Google Scholar 

  31. Li XY (2016) Degradation analysis of photovoltaic modules based on operational data: effects of seasonal pattern and sensor drifting. IOP Conf Ser Earth Environ Sci 40(1)

    Google Scholar 

  32. Sato D, Yamada N (2019) Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renew Sustain Energy Rev 104:151–166

    Article  Google Scholar 

  33. Bahaidarah H, Subhan A, Gandhidasan P, Rehman S (2013) Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59:445–453

    Article  Google Scholar 

  34. Krauter S (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells 82:131–137

    Article  Google Scholar 

  35. Saad O, Masud B (2009) Improving photovoltaic module efficiency using water Cooling. Heat Transfer Eng 30(6):499–505

    Google Scholar 

  36. Kaldellis JK, Kokala A (2010) Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy 3:4862–9

    Google Scholar 

  37. Radziemska E, Klugmann E (2002) Thermally affected parameters of the current-voltage characteristics of silicon photocell. Energy Convers Manage 43:1889–1900

    Article  Google Scholar 

  38. Radziemska E (2003) The effect of temperature on the power drop in crystalline silicon solar cells. Renew Energy 28:1–12

    Article  Google Scholar 

  39. Piotrowski LP, Simões MG, Farret FA (2020) Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Sol Energy 207:103–109

    Article  Google Scholar 

  40. Otth DH, Ross RG (1983) Assessing photovoltaic module degradation and lifetime from long term environmental tests. In: Institute of environmental sciences 29th annual meeting, Los Angeles, pp 121–126

    Google Scholar 

  41. Akbarzadeh A, Wadowski T (1996) Heat pipe-based cooling systems for photovoltaic cells under concentraed solar radiation. Appl Therm Eng 16(1):81–87

    Article  Google Scholar 

  42. Rodrigues EMG, Melı´cio R, Mendes VMF, Catala˜o JPS (2011) Simulation of a solar cell considering single-diode equivalent circuit model. In: International conference on renewable energies and power quality, Spain, 13–15 Apr 2011

    Google Scholar 

  43. Das D, Kalita P, Dewan A, Tanweer S (2019) Development of a novel thermal model for a PV/T collector and its experimental analysis. Solar Energy 188:631–643

    Google Scholar 

  44. Jordan DC, Silverman TJ, Wohlgemuth JH, Kurtz SR, VanSant KT (2017) Photovoltaic failure and degradation modes. Prog Photovoltaics Res Appl 25:318–326

    Article  Google Scholar 

  45. Krauter S (1995) Thermal and optical enhanced PV-modules. In: Proceedings of the 13th European photovoltaic solar energy conference, Nice, France, 23–27 Oct 1995, pp 2306–2309

    Google Scholar 

  46. Abdolzadeh M, Ameri M (2009) Improving the effectiveness of a photovoltaic water pum** system by spraying water over the front of photovoltaic cells. Renew Energy 34:91–96

    Article  Google Scholar 

  47. Nizetic S, Coko D, Yadav A, Grubisi-Cabo F (2016) Water spray cooling technique applied on a photo voltaic panel: The performance response. Energy Convers Manage 108:287–296

    Article  Google Scholar 

  48. Abdolzadeh M, Ameri M, Mehrabian MA (2011) Effects of water spray over the photovoltaic modules on the performance of a photovoltaic water pum** system under different operating conditions. Energy Sources Part A Recovery Utilization Environ Effects 33(16):1546–1555

    Google Scholar 

  49. Rabiul Islam Md, Hussein HA, Numan Ali H, Abdulrahman RA (2017) Improving the hybrid photovoltaic/thermal system performance using water-cooling technique and Zn-H2O Nanofluid. Int J Photoenergy

    Google Scholar 

  50. Luboń W, Pełka G, Janowski M, Pająk L, Stefaniuk M, Kotyza J, Reczek P (2020) Assessing the impact of water cooling on pv modules efficiency. Energies 13(10):2414

    Article  Google Scholar 

  51. Bharti R, Kuitche J, Tamizh-Mani G (2009) Nominal operating cell temperature (NOCT) effects of module size, power, load and solar spectrum. In: 34th IEEE photovoltaic specialists conference (PVSC), Arizona State University, USA, 7–12 June 2009, pp 1657–62

    Google Scholar 

  52. Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H (2013) Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng J 4(4)

    Google Scholar 

  53. Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach, 5th ed. McGraw-Hill Science, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, J. (2022). Heat Effect on Silicon PV Modules. In: Al-Ahmed, A., Inamuddin, Al-Sulaiman, F.A., Khan, F. (eds) The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-84635-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84635-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84634-3

  • Online ISBN: 978-3-030-84635-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation