Apple (Malus domestica) By-products: Chemistry, Functionality and Industrial Applications

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

Apple is generally perceived as a healthy food and the most consumed fruit all over the world. Besides being consumed as a fresh product, apples are also widely consumed in the form of beverages as juices, concentrates and siders, as well as food ingredients such as gelling pectin and aroma compounds. Apple processing originates huge quantities of by-products, namely the remaining pulp, skin and seeds i.e., the insoluble material obtained after juice and/or pectin extraction, and the retentate i.e., the compounds retained in the ultrafiltration membranes during juice clarification processes. The simultaneous high-water content and richness in compounds found in apple by-products make them easily perishable and discarded at high cost. However, these by-products are relevant sources of polysaccharides, phenolic compounds, and other hydrophobic compounds that can be valued by several industrial fields. In this context, this book chapter will provide an overview of the apple by-products valuation having in mind their chemical compositions, stabilization, and strategies for their mitigation as agro-industrial disposables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adil, İ. H., Çetin, H. İ., Yener, M. E., & Bayındırlı, A. (2007). Subcritical (carbon dioxide+ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. The Journal of Supercritical Fluids, 43(1), 55–63.

    Article  CAS  Google Scholar 

  • Al-Dajani, W. W., & Tschirner, U. W. (2008). Pre-extraction of hemicelluloses and subsequent kraft pul** Part I: Alkaline extraction. Tappi Journal, 7(6), 3–8.

    CAS  Google Scholar 

  • Alkorta, I., Garbisu, C., Llama, M. J., & Serra, J. L. (1998). Industrial applications of pectic enzymes: A review. Process Biochemistry, 33(1), 21–28.

    Article  CAS  Google Scholar 

  • Aprikian, O., Duclos, V., Guyot, S., Besson, C., Manach, C., Bernalier, A., Morand, C., Rémésy, C., & Demigné, C. (2003). Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. The Journal of Nutrition, 133(6), 1860–1865.

    Article  CAS  PubMed  Google Scholar 

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.

    Article  CAS  Google Scholar 

  • Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798.

    Article  Google Scholar 

  • Bchir, B., Rabetafika, H. N., Paquot, M., & Blecker, C. (2014). Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food and Bioprocess Technology, 7(4), 1114–1127.

    Article  CAS  Google Scholar 

  • Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P. S. (2008). Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28(4), 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Birtic, S., Régis, S., Le Bourvellec, C., & Renard, C. M. G. C. (2019). Impact of air-drying on polyphenol extractability from apple pomace. Food Chemistry, 296, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., & Uyttendaele, M. (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1056–1066.

    Article  PubMed  Google Scholar 

  • Cang-xue, L. (2011). Optimization of the preparation of microcrystalline cellulose from apple pomace. Food Science, 32(54), e58.

    Google Scholar 

  • Chand, P., Shil, A. K., Sharma, M., & Pakade, Y. B. (2014). Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: Mechanism, kinetics, and thermodynamics. International Biodeterioration & Biodegradation, 90, 8–16.

    Article  CAS  Google Scholar 

  • Chen, J., Liang, R.-H., Liu, W., Li, T., Liu, C.-M., Wu, S.-S., & Wang, Z.-J. (2013). Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydrate Polymers, 91(1), 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Claussen, I. C., Ustad, T. S., Strommen, I., & Walde, P. M. (2007). Atmospheric freeze drying: A review. Drying Technology, 25(6), 947–957.

    Article  CAS  Google Scholar 

  • Coelho, E., Rocha, M. A. M., Saraiva, J. A., & Coimbra, M. A. (2014). Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers, 99, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Colombino, E., Ferrocino, I., Biasato, I., Cocolin, L. S., Prieto-Botella, D., Zduńczyk, Z., Jankowski, J., Milala, J., Kosmala, M., Fotschki, B., Capucchio, M. T., & Juśkiewicz, J. (2020a). Dried fruit pomace inclusion in poultry diet: Growth performance, intestinal morphology and physiology. Journal of Animal Science and Biotechnology, 11(1), 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombino, E., Zduńczyk, Z., Jankowski, J., Cocolin, L. S., Schiavone, A., Biasato, I., Prieto-Botella, D., Karlińska, E., Kosmala, M., Ognik, K., Capucchio, M. T., & Juśkiewicz, J. (2020b). Effects of feeding dried fruit pomaces as additional fibre-phenolic compound on meat quality, blood chemistry and redox status of broilers. Animals, 10(11), 1968.

    Article  PubMed Central  Google Scholar 

  • Cruz, M. G., Bastos, R., Pinto, M., Ferreira, J. M., Santos, J. F., Wessel, D. F., Coelho, E., & Coimbra, M. A. (2018). Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. Journal of Cleaner Production, 193, 652–660.

    Article  CAS  Google Scholar 

  • de Bruijn, J., & Bórquez, R. (2006). Analysis of the fouling mechanisms during cross-flow ultrafiltration of apple juice. LWT-Food Science and Technology, 39(8), 861–871.

    Article  Google Scholar 

  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2012). Dietary (Poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818–1892.

    Google Scholar 

  • Delgado-Pelayo, R., Gallardo-Guerrero, L., & Hornero-Méndez, D. (2014). Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Research International, 65, 272–281.

    Article  CAS  Google Scholar 

  • Dhillon, G. S., Kaur, S., & Brar, S. K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, 789–805.

    Article  Google Scholar 

  • Downing, D. L. (2012). Processed Apple Products (1st ed.). Springer US.

    Google Scholar 

  • FAOSTAT. (2019). Apple production in 2017; Crops/World Regions/Production Quantity. Retrieved 17 July, from 2019 http://faostat.fao.org/.

  • Feliciano, R. P., Antunes, C., Ramos, A., Serra, A. T., Figueira, M. E., Duarte, C. M. M., Carvalho, A. d., & Bronze, M. R. (2010). Characterization of traditional and exotic apple varieties from Portugal. Part 1: Nutritional, phytochemical and sensory evaluation. Journal of Functional Foods, 2(1), 35–45.

    Article  CAS  Google Scholar 

  • Fernandes, P. A. R., Ferreira, S. S., Bastos, R., Ferreira, I., Cruz, M. T., Pinto, A., Coelho, E., Passos, C. P., Coimbra, M. A., Cardoso, S. M., & Wessel, D. F. (2019a). Apple pomace extract as a sustainable food ingredient. Antioxidants, 8(6), 189.

    Article  CAS  PubMed Central  Google Scholar 

  • Fernandes, P. A. R., Le Bourvellec, C., Renard, C. M. G. C., Nunes, F. M., Bastos, R., Coelho, E., Wessel, D. F., Coimbra, M. A., & Cardoso, S. M. (2019b). Revisiting the chemistry of apple pomace polyphenols. Food Chemistry, 294, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, P. A. R., Le Bourvellec, C., Renard, C. M. G. C., Wessel, D. F., Cardoso, S. M., & Coimbra, M. A. (2020). Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydrate Polymers, 230, 115644.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, P. A. R., Silva, A. M. S., Evtuguin, D. V., Nunes, F. M., Wessel, D. F., Cardoso, S. M., & Coimbra, M. A. (2019c). The hydrophobic polysaccharides of apple pomace. Carbohydrate Polymers, 223, 115–132.

    Article  Google Scholar 

  • Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., Renard, C. M. G. C., & Coimbra, M. A. (2002). Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. Var. S. Bartolomeu) and changes after sun-drying. Journal of Agricultural and Food Chemistry, 50(16), 4537–4544.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, S. S., Monteiro, F., Passos, C. P., Silva, A. M. S., Wessel, D. F., Coimbra, M. A., & Cardoso, S. M. (2020). Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Research International, 132, 109055.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, S. S., Passos, C. P., Cardoso, S. M., Wessel, D. F., & Coimbra, M. A. (2018). Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chemistry, 246, 386–393.

    Article  CAS  PubMed  Google Scholar 

  • Ferrentino, G., Morozova, K., Mosibo, O. K., Ramezani, M., & Scampicchio, M. (2018). Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. Journal of Cleaner Production, 186, 253–261.

    Article  CAS  Google Scholar 

  • Février, H., Le Quéré, J.-M., Le Bail, G., & Guyot, S. (2017). Polyphenol profile, PPO activity and pH variation in relation to colour changes in a series of red-fleshed apple juices. LWT-Food Science and Technology, 85, 353–362.

    Article  Google Scholar 

  • Fu, C., Tian, H., Li, Q., Cai, T., & Du, W. (2006). Ultrasound-assisted extraction of xyloglucan from apple pomace. Ultrasonics Sonochemistry, 13(6), 511–516.

    Article  CAS  PubMed  Google Scholar 

  • Fulgencio, S. C., Jara, P. J., Sonia, T., José, S., Elisabet, F., Lluis, T. J., & Isabel, G. (2010). Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition & Food Research, 54(7), 939–946.

    Article  Google Scholar 

  • Garna, H., Emaga, T. H., Robert, C., & Paquot, M. (2011). New method for the purification of electrically charged polysaccharides. Food Hydrocolloids, 25(5), 1219–1226.

    Article  CAS  Google Scholar 

  • Gutiérrez-Díaz, I., Salazar, N., Pérez-Jiménez, J., de los Reyes-Gavilán, C. G., Gueimonde, M., & González, S. (2020). New players in the relationship between diet and microbiota: The role of macromolecular antioxidant polyphenols. European Journal of Nutrition.

    Google Scholar 

  • Guyot, S., Bernillon, S., Poupard, P., & Renard Catherine, M. G. C. (2009). Multiplicity of phenolic oxidation products in apple juices and ciders, from synthetic medium to commercial products. In F. Daayf & V. Lattanzio (Eds.), Recent advances in polyphenol research (Vol. 1, 1st ed.). Wiley-Blackwell.

    Google Scholar 

  • Guyot, S., Doco, T., Souquet, J.-M., Moutounet, M., & Drilleau, J.-F. (1997). Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. kermerrien) skin and pulp. Phytochemistry, 44(2), 351–357.

    Article  CAS  Google Scholar 

  • Guyot, S., Le Bourvellec, C., Marnet, N., & Drilleau, J. F. (2002). Procyanidins are the most abundant polyphenols in dessert apples at maturity. LWT-Food Science and Technology, 35(3), 289–291.

    Article  CAS  Google Scholar 

  • Guyot, S., Marnet, N., Laraba, D., Sanoner, P., & Drilleau, J.-F. (1998). Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French Cider apple variety (Malus domestica Var. Kermerrien). Journal of Agricultural and Food Chemistry, 46(5), 1698–1705.

    Article  CAS  Google Scholar 

  • Guyot, S., Marnet, N., Sanoner, P., & Drilleau, J.-F. (2003). Variability of the Polyphenolic Composition of Cider Apple (Malus domestica) Fruits and Juices. Journal of Agricultural and Food Chemistry, 51(21), 6240–6247.

    Article  CAS  PubMed  Google Scholar 

  • Heras-Ramírez, M. E., Quintero-Ramos, A., Camacho-Dávila, A. A., Barnard, J., Talamás-Abbud, R., Torres-Muñoz, J. V., & Salas-Muñoz, E. (2012). Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food and Bioprocess Technology, 5(6), 2201–2210.

    Article  Google Scholar 

  • Huc-Mathis, D., Journet, C., Fayolle, N., & Bosc, V. (2019). Emulsifying properties of food by-products: Valorizing apple pomace and oat bran. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 84–91.

    Article  CAS  Google Scholar 

  • Hyson, D. A. (2011). A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition: An International Review Journal, 2(5), 408–420.

    Article  CAS  Google Scholar 

  • James, S. J., & James, C. (2010). The food cold-chain and climate change. Food Research International, 43(7), 1944–1956.

    Article  Google Scholar 

  • Janick, J., Cummins, J. N., Brown, S. K., & Hemmat, M. (1996). Apples. In J. Janick & J. N. Moore (Eds.), Fruit breeding, tree and tropical fruits. Wiley.

    Google Scholar 

  • Joshi, V. K., & Sandhu, D. K. (1996). Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace. Bioresource Technology, 56(2), 251–255.

    Article  CAS  Google Scholar 

  • Jovanović, M., Petrović, M., Miočinović, J., Zlatanović, S., Laličić Petronijević, J., Mitić-Ćulafić, D., & Gorjanović, S. (2020). Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods, 9(6), 763.

    Article  PubMed Central  Google Scholar 

  • Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77(3), 215–227.

    Article  CAS  PubMed  Google Scholar 

  • Kayacier, A., Yüksel, F., & Karaman, S. (2014). Response surface methodology study for optimization of effects of fiber level, frying temperature, and frying time on some physicochemical, textural, and sensory properties of wheat chips enriched with apple fiber. Food and Bioprocess Technology, 7(1), 133–147.

    Article  CAS  Google Scholar 

  • Kennedy, M., List, D., Lu, Y., Foo, L. Y., Newman, R. H., Sims, I. M., Bain, P. J. S., Hamilton, B., & Fenton, G. (1999). Apple pomace and products derived from apple pomace: Uses, composition and analysis. In H. F. Linskens & J. F. Jackson (Eds.), Analysis of plant waste materials (Modern methods of plant analysis) (Vol. 20). Springer.

    Google Scholar 

  • Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8), 1059–1065.

    Article  Google Scholar 

  • Kosmala, M., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., & Renard, C. M. G. C. (2010). Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT-Food Science and Technology, 43(1), 173–180.

    Article  CAS  Google Scholar 

  • Ktenioudaki, A., O’Shea, N., & Gallagher, E. (2013). Rheological properties of wheat dough supplemented with functional by-products of food processing: Brewer’s spent grain and apple pomace. Journal of Food Engineering, 116(2), 362–368.

    Article  Google Scholar 

  • Lavelli, V., & Corti, S. (2011). Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chemistry, 129(4), 1578–1583.

    Article  CAS  Google Scholar 

  • Le Bourvellec, C., Bagano Vilas Boas, P., Lepercq, P., Comtet-Marre, S., Auffret, P., Ruiz, P., Bott, R., Renard, C. M. G. C., Dufour, C., Chatel, J.-M., & Mosoni, P. (2019). Procyanidin-cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients, 11(3), 664.

    Article  PubMed Central  Google Scholar 

  • Le Bourvellec, C., Guyot, S., & Renard, C. M. G. C. (2009). Interactions between apple (Malus x domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydrate Polymers, 75(2), 251–261.

    Article  Google Scholar 

  • Le Bourvellec, C., Le Quere, J.-M., & Renard, C. M. G. C. (2007). Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice: Studies in model suspensions and application. Journal of Agricultural and Food Chemistry, 55(19), 7896–7904.

    Article  PubMed  Google Scholar 

  • Lei, L., Zhu, H., Zhang, C., Wang, X., Ma, K. Y., Wang, L., Zhao, Y., & Chen, Z.-Y. (2017). Dietary β-sitosterol is more potent in reducing plasma cholesterol than sesamin in hypercholesterolemia hamsters. European Journal of Lipid Science and Technology, 119(7), 1600349.

    Article  Google Scholar 

  • Massias, A., Boisard, S., Baccaunaud, M., Leal Calderon, F., & Subra-Paternault, P. (2015). Recovery of phenolics from apple peels using CO2+ethanol extraction: Kinetics and antioxidant activity of extracts. The Journal of Supercritical Fluids, 98, 172–182.

    Article  CAS  Google Scholar 

  • Mazza, G., & Velioglu, Y. S. (1992). Anthocyanins and other phenolic compounds in fruits of red-flesh apples. Food Chemistry, 43(2), 113–117.

    Article  CAS  Google Scholar 

  • Mazzaferro, L. S., Cuña, M. M., & Breccia, J. D. (2011). Production of xylo-oligosaccharides by chemoenzymatic treatment of agricultural by-products. BioResources, 6(4), 5050–5061.

    CAS  Google Scholar 

  • Mehrländer, K., Dietrich, H., Sembries, S., Dongowski, G., & Will, F. (2002). Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. Journal of Agricultural and Food Chemistry, 50(5), 1230–1236.

    Article  PubMed  Google Scholar 

  • Millet, M., Poupard, P., Guilois-Dubois, S., Zanchi, D., & Guyot, S. (2019). Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine. Food Chemistry, 276, 797–805.

    Article  CAS  PubMed  Google Scholar 

  • Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., & Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101(14), 5414–5418.

    Article  CAS  PubMed  Google Scholar 

  • Min, B., Lim, J., Ko, S., Lee, K.-G., Lee, S. H., & Lee, S. (2011). Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresource Technology, 102(4), 3855–3860.

    Article  CAS  PubMed  Google Scholar 

  • Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28–41.

    Article  Google Scholar 

  • Motevali, A., Minaei, S., & Khoshtagaza, M. H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2), 1192–1199.

    Article  Google Scholar 

  • Nicolas, J. J., Richard-Forget, F. C., Goupy, P. M., Amiot, M. J., & Aubert, S. Y. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science and Nutrition, 34(2), 109–157.

    Article  CAS  PubMed  Google Scholar 

  • Noreen, A., Nazli, Z.-I.-H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., Iqbal, R., Tabasum, S., Zuber, M., & Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101, 254–272.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea, N., Arendt, E., & Gallagher, E. (2014). Enhancing an extruded puffed snack by optimising die head temperature, screw speed and apple pomace inclusion. Food and Bioprocess Technology, 7(6), 1767–1782.

    Article  Google Scholar 

  • O’Shea, N., Ktenioudaki, A., Smyth, T. P., McLoughlin, P., Doran, L., Auty, M. A. E., Arendt, E., & Gallagher, E. (2015). Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. Journal of Food Engineering, 153, 89–95.

    Article  Google Scholar 

  • Panchev, I., Kirchev, N., & Kratchanov, C. (1988). Improving pectin technology. II. Extraction using ultrasonic treatment. International Journal of Food Science & Technology, 23(4), 337–341.

    Article  CAS  Google Scholar 

  • Passos, C. P., & Coimbra, M. A. (2017). Microwave extraction of bioactive compounds from industrial by-products. In G. Cravotto & D. Carnaroglio (Eds.), Microwave chemistry (1st ed.). De Gruyter.

    Google Scholar 

  • Périno-Issartier, S., Zill, E. H., Abert-Vian, M., & Chemat, F. (2011). Solvent free microwave-assisted extraction of antioxidants from Sea Buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, 4(6), 1020–1028.

    Article  Google Scholar 

  • Perussello, C. A., Zhang, Z., Marzocchella, A., & Tiwari, B. K. (2017). Valorization of apple pomace by extraction of valuable compounds. Comprehensive Reviews in Food Science and Food Safety, 16(5), 776–796.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, F., Pelloux, J., & Rayon, C. (2017). Plant pectin acetylesterase structure and function: New insights from bioinformatic analysis. BMC Genomics, 18(1), 456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinelo, M., Zornoza, B., & Meyer, A. S. (2008). Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Separation and Purification Technology, 63(3), 620–627.

    Article  CAS  Google Scholar 

  • **ret, D., Fabiano-Tixier, A.-S., Bourvellec, C. L., Renard, C. M. G. C., & Chemat, F. (2012). Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. Journal of Food Engineering, 111(1), 73-81.

    Google Scholar 

  • Poupard, P., Sanoner, P., Baron, A., Renard, C. M. G. C., & Guyot, S. (2011). Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by high-performance liquid chromatography coupled to electrospray ion trap mass spectrometry. Journal of Mass Spectrometry, 46(11), 1186–1197.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, N.-X., Tian, Y.-X., Qiao, S.-T., & Deng, H. (2009). Apple pectin behavior separated by ultrafiltration. Agricultural Sciences in China, 8(10), 1193–1202.

    Article  Google Scholar 

  • Rabetafika, H. N., Bchir, B., Blecker, C., & Richel, A. (2014). Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends in Food Science & Technology, 40(1), 99–114.

    Article  CAS  Google Scholar 

  • Ray, S., Vigouroux, J., Quémener, B., Bonnin, E., & Lahaye, M. (2014). Novel and diverse fine structures in LiCl-DMSO extracted apple hemicelluloses. Carbohydrate Polymers, 108, 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Reis, S. F., Rai, D. K., & Abu-Ghannam, N. (2012). Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chemistry, 135(3), 1991–1998.

    Article  CAS  PubMed  Google Scholar 

  • Renard, C. M. G. C., Le Quéré, J. M., Bauduin, R., Symoneaux, R., Le Bourvellec, C., & Baron, A. (2011). Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chemistry, 124(1), 117–125.

    Article  CAS  Google Scholar 

  • Renard, C. M. G. C., Lemeunier, C., & Thibault, J. F. (1995). Alkaline extraction of xyloglucan from depectinised apple pomace: Optimisation and characterisation. Carbohydrate Polymers, 28(3), 209–216.

    Article  Google Scholar 

  • Renard, C. M. G. C., Lomax, J. A., & Boon, J. J. (1992). Apple-fruit xyloglucans: A comparative study of enzyme digests of whole cell walls and of alkali-extracted xyloglucans. Carbohydrate Research, 232(2), 303–320.

    Article  CAS  PubMed  Google Scholar 

  • Renard, C. M. G. C., & Thibault, J.-F. (1993). Structure and properties of apple and sugar-beet pectins extracted by chelating agents. Carbohydrate Research, 244(1), 99–114.

    Article  CAS  Google Scholar 

  • Renard, C. M. G. C., Voragen, A. G. J., Thibault, J. F., & Pilnik, W. (1991). Studies on apple protopectin V: Structural studies on enzymatically extracted pectins. Carbohydrate Polymers, 16(2), 137–154.

    Article  CAS  Google Scholar 

  • Root, W. H., & Barret, D. M. (2004). Apple and apple processing. In D. M. Barret, L. Somogyi, & H. Ramaswamy (Eds.), Processing fruits: Science and Technology (1st ed.). Taylor and Francis.

    Google Scholar 

  • Royer, G., Madieta, E., Symoneaux, R., & Jourjon, F. (2006). Preliminary study of the production of apple pomace and quince jelly. LWT-Food Science and Technology, 39(9), 1022–1025.

    Article  CAS  Google Scholar 

  • Sanoner, P., Guyot, S., Marnet, N., Molle, D., & Drilleau, J. F. (1999). Polyphenol profiles of French Cider apple varieties (Malus domestica sp.). Journal of Agricultural and Food Chemistry, 47(12), 4847–4853.

    Article  CAS  PubMed  Google Scholar 

  • Schieber, A., Hilt, P., Streker, P., Endreß, H.-U., Rentschler, C., & Carle, R. (2003). A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science & Emerging Technologies, 4(1), 99–107.

    Article  CAS  Google Scholar 

  • Schols, H. A., Posthumus, M. A., & Voragen, A. G. J. (1990). Structural features of hairy regions of pectins isolated from apple juice produced by the liquefaction process. Carbohydrate Research, 206(1), 117–129.

    Article  CAS  Google Scholar 

  • Schols, H. A., Vierhuis, E., Bakx, E. J., & Voragen, A. G. J. (1995). Different populations of pectic hairy regions occur in apple cell walls. Carbohydrate Research, 275(2), 343–360.

    Article  CAS  PubMed  Google Scholar 

  • Sekhon-Loodu, S., Warnakulasuriya, S. N., Rupasinghe, H. P. V., & Shahidi, F. (2013). Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chemistry, 140(1), 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Selvendran, R. R. (1985). Developments in the chemistry and biochemistry of pectic and hemicellulosic polymers. Journal of Cell Science, 1985, 51–88.

    Article  Google Scholar 

  • Shalini, R., & Gupta, D. K. (2010). Utilization of pomace from apple processing industries: A review. Journal of Food Science and Technology, 47(4), 365–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner, R. C., Gigliotti, J. C., Ku, K.-M., & Tou, J. C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews, 76(12), 893–909.

    PubMed  Google Scholar 

  • Snelders, J., Olaerts, H., Dornez, E., Van de Wiele, T., Aura, A.-M., Vanhaecke, L., Delcour, J. A., & Courtin, C. M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 10, 1–12.

    Article  CAS  Google Scholar 

  • Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686–692.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Bekkour, K., Wadhwa, S. S., & Waterhouse, G. I. N. (2014). Rheological and chemical characterization of smoothie beverages containing high concentrations of fibre and polyphenols from apple. Food and Bioprocess Technology, 7(2), 409–423.

    Article  CAS  Google Scholar 

  • Usman, M., Ahmed, S., Mehmood, A., Bilal, M., Patil, P. J., Akram, K., & Farooq, U. (2020). Effect of apple pomace on nutrition, rheology of dough and cookies quality. Journal of Food Science and Technology, 57(9), 3244–3251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products: A review. Biosystems Engineering, 98(1), 1–16.

    Article  Google Scholar 

  • Vendruscolo, F., Albuquerque, P. M., Streit, F., Esposito, E., & Ninow, J. L. (2008). Apple pomace: A versatile substrate for biotechnological applications. Critical Reviews in Biotechnology, 28(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Voragen, A. G. J., Coenen, G.-J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263.

    Article  CAS  Google Scholar 

  • Walter, R. H., Rao, M. A., Van Buren, J. P., Sherman, R. M., & Kenny, J. F. (1977). Development and characterization of an apple cellulose gel. Journal of Food Science, 42(1), 241–243.

    Article  CAS  Google Scholar 

  • Wang, J., & Chao, Y. (2002). Drying characteristics of irradiated apple slices. Journal of Food Engineering, 52(1), 83–88.

    Article  Google Scholar 

  • Wang, S., Chen, F., Wu, J., Wang, Z., Liao, X., & Hu, X. (2007a). Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering, 78(2), 693–700.

    Article  CAS  Google Scholar 

  • Wang, T., & Zhao, Y. (2021). Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydrate Polymers, 253, 117225.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Chen, Q., & Lü, X. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 38, 129–137.

    Article  CAS  Google Scholar 

  • Wang, X., Kristo, E., & LaPointe, G. (2019). The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocolloids, 91, 83–91.

    Article  CAS  Google Scholar 

  • Wang, X., & Lü, X. (2014). Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydrate Polymers, 102, 174–184.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Sun, J., Chen, F., Liao, X., & Hu, X. (2007b). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal of Food Engineering, 80(2), 536–544.

    Article  Google Scholar 

  • Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., & Hu, X. (2007c). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39–46.

    Article  CAS  Google Scholar 

  • Watt, D. K., Brasch, D. J., Larsen, D. S., & Melton, L. D. (1999). Isolation, characterisation, and NMR study of xyloglucan from enzymatically depectinised and non-depectinised apple pomace. Carbohydrate Polymers, 39(2), 165–180.

    Article  CAS  Google Scholar 

  • Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., & Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers, 142, 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., & Witrowa-Rajchert, D. (2016). The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue. Applied Acoustics, 103, 136–142.

    Article  Google Scholar 

  • Wong-Paz, J. E., Muñiz-Márquez, D. B., Aguilar, C. N., Sotin, H., & Guyot, S. (2015). Enzymatic synthesis, purification and in vitro antioxidant capacity of polyphenolic oxidation products from apple juice. LWT-Food Science and Technology, 64(2), 1091–1098.

    Article  CAS  Google Scholar 

  • Yan, H., & Kerr, W. L. (2013). Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying. Journal of the Science of Food and Agriculture, 93(6), 1499–1504.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y. G., Fan, X. D., Liu, F. X., Yu, Q. Y., & He, G. D. (2009). Fast extraction of pectin from apple pomace by high intensity pulsed electric field. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 39(5), 1224–1228.

    CAS  Google Scholar 

  • Yu, H., Qin, C., Zhang, P., Ge, Q., Wu, M., Wu, J., Wang, M., & Wang, Z. (2015). Antioxidant effect of apple phenolic on lipid peroxidation in Chinese-style sausage. Journal of Food Science and Technology, 52(2), 1032–1039.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana M. Cardoso .

Editor information

Editors and Affiliations

Ethics declarations

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020 | UIDP/50006/2020. The authors also acknowledge the funding through the Project ProfitApple 38162, QREN I&DT in co-promotion 2013, FEDER, COMPETE. Pedro A. R. Fernandes (SFRH/BD/107731/2015) thanks FCT (Fundação para a Ciência e Tecnologia) and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for his PhD grant. Susana M. Cardoso thanks the research contract under the project AgroForWealth: Biorefining of agricultural and forest by-products and wastes: integrated strategic for valorisation of resources towards society wealth and sustainability (CENTRO-01-0145-FEDER-000001), funded by Centro2020, through FEDER and PT2020.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, P.A.R., Wessel, D.F., Coimbra, M.A., Cardoso, S.M. (2022). Apple (Malus domestica) By-products: Chemistry, Functionality and Industrial Applications. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_14

Download citation

Publish with us

Policies and ethics

Navigation