Thyroid, Parathyroid, and Adrenal Glands

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry
  • 1988 Accesses

Abstract

This chapter provides a practical overview of frequently used markers in the diagnosis and differential diagnosis of both common and rare neoplasms of the thyroid, parathyroid and adrenal glands, with a specific focus on papillary thyroid carcinoma and its mimickers. The chapter contains 30+ questions; each question is addressed with a table, concise note and representative pictures if applicable. In addition to the literature review, the authors have included their own experience and tested numerous antibodies reported in the literature. The most effective diagnostic panels of antibodies have been recommended for many entities, such as CK19, HBME-1, and galectin-3 being suggested as the best diagnostic panel for identifying papillary thyroid carcinoma. New markers, such as TROP-2, are discussed. Furthermore, immunophenotypes of normal thyroid tissue have been described, which tends to be neglected in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dabbs DJ. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010.

    Google Scholar 

  2. Liu H, Lin F, DeLellis RA. Thyroid and parathyroid gland. In: Lin F, Prichard JW, Liu H, Wilkerson M, Scheurch C, editors. Handbook of practical immunohistochemistry: frequently asked questions. New York, NY: Springer; 2011. p. 137–58.

    Chapter  Google Scholar 

  3. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008;132(3):359–72.

    Article  PubMed  Google Scholar 

  4. Civitareale D, Lonigro R, Sinclair AJ, Di Lauro R. A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J. 1989;8(9):2537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Molecul Morphol. 2000;8(3):189–94.

    Article  CAS  Google Scholar 

  6. Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res. 1994;54(17):4744–9.

    CAS  PubMed  Google Scholar 

  7. Liles N, Hamilton G, Shen SS, Krishnan B, Truong LD. PAX-8 is a sensitive marker for thyroid differentiation. Comparison with PAX-2, TTF-1 and thyroglobulin [USCAP abstract 573]. Mod Pathol. 2010;23(1s):130A.

    Google Scholar 

  8. Fonseca E, Nesland JM, Hoie J, Sobrinho-Simoes M. Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: an immunohistochemical study of simple and stratified epithelial-type cytokeratins. Virchows Arch. 1997;430(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  9. Ghaffari M, Zeng X, Whitsett JA, Yan C. Nuclear localization domain of thyroid transcription factor-1 in respiratory epithelial cells. Biochem J. 1997;328(Pt 3):757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond). 2009;116(1):27–35.

    Article  CAS  Google Scholar 

  11. Kondo T, Nakazawa T, Ma D, Niu D, Mochizuki K, Kawasaki T, et al. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab Investig. 2009;89(7):791–9.

    Article  CAS  PubMed  Google Scholar 

  12. Joba W, Spitzweg C, Schriever K, Heufelder AE. Analysis of human sodium/iodide symporter, thyroid transcription factor-1, and paired-box-protein-8 gene expression in benign thyroid diseases. Thyroid. 1999;9(5):455–66.

    Article  CAS  PubMed  Google Scholar 

  13. Ordóñez NG. Value of thyroid transcription factor-1 immunostaining in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol. 2012;20(5):429–44.

    Article  PubMed  CAS  Google Scholar 

  14. Ye J, Findeis-Hosey JJ, Yang Q, McMahon LA, Yao JL, Li F, et al. Combination of napsin A and TTF-1 immunohistochemistry helps in differentiating primary lung adenocarcinoma from metastatic carcinoma in the lung. Appl Immunohistochem Mol Morphol. 2011;19(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  15. Cimino-Mathews A, Sharma R, Netto GJ. Diagnostic use of PAX8, CAIX, TTF-1, and TGB in metastatic renal cell carcinoma of the thyroid. Am J Surg Pathol. 2011;35(5):757–61.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  17. Katoh R, Kawaoi A, Miyagi E, Li X, Suzuki K, Nakamura Y, et al. Thyroid transcription factor-1 in normal, hyperplastic, and neoplastic follicular thyroid cells examined by immunohistochemistry and nonradioactive in situ hybridization. Mod Pathol. 2000;13(5):570–6.

    Article  CAS  PubMed  Google Scholar 

  18. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.

    Article  PubMed  Google Scholar 

  19. Tacha D, Zhou D, Cheng L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2011;19(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  20. Harach HR, Franssila KO. Thyroglobulin immunostaining in follicular thyroid carcinoma: relationship to the degree of differentiation and cell type. Histopathology. 1988;13(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  21. Carcangiu ML, Steeper T, Zampi G, Rosai J. Anaplastic thyroid carcinoma. A study of 70 cases. Am J Clin Pathol. 1985;83(2):135–58.

    Article  CAS  PubMed  Google Scholar 

  22. Logmans SC, Jöbsis AC. Thyroid-associated antigens in routinely embedded carcinomas. Possibilities and limitations studied in 116 cases. Cancer. 1984;54(2):274–9.

    Article  CAS  PubMed  Google Scholar 

  23. Stepan LP, Trueblood ES, Hale K, Babcook J, Borges L, Sutherland CL. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: potential implications as a cancer therapeutic target. J Histochem Cytochem. 2011;59(7):701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu H, Shi J, Lin F. TROP-2 is a potential novel immunomarker for identification of papillary thyroid carcinomas [USCAP abstract 627]. Mod Pathol. 2014;27(S2):155A.

    Google Scholar 

  25. Zhang PJ, Gao HG, Pasha TL, Litzky L, Livolsi VA. TTF-1 expression in ovarian and uterine epithelial neoplasia and its potential significance, an immunohistochemical assessment with multiple monoclonal antibodies and different secondary detection systems. Int J Gyneol Pathol. 2009;28(1):10–8.

    Article  Google Scholar 

  26. Dathan N, Parlato R, Rosica A, De Felice M, Di Lauro R. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn. 2002;224(4):450–6.

    Article  CAS  PubMed  Google Scholar 

  27. Lloyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech. 1997;39(2):168–81.

    Article  CAS  PubMed  Google Scholar 

  28. Sequeira M, Al-Khafaji F, Park S, Wheeler MH, Chatterjee VK, et al. Production and application of polyclonal antibody to human thyroid transcription factor 2 reveals thyroid transcription factor 2 protein expression in adult thyroid and hair follicles and prepubertal testis. Thyroid. 2003;13(10):927–32.

    Article  CAS  PubMed  Google Scholar 

  29. Matoso A, Easley SE, Mangray S, Jacob R, DeLellis RA. Spindle cell foci in the thyroid gland: an immunohistochemical analysis. Appl Immunohistochem Mol Morphol. 2011;19(5):400–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Lin F. Application of immunohistochemistry in thyroid pathology: an update in immunohistochemistry. Arch Pathol Lab Med. 2014; in press

    Google Scholar 

  32. Marques AR, Espadinha C, Frias MJ, Roque L, Catarino AL, Sobrinho LG, et al. Underexpression of peroxisome proliferator-activated receptor (PPAR) gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer. 2004;91(4):732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87(8):3947–52.

    CAS  PubMed  Google Scholar 

  34. Gustafson KS, LiVolsi VA, Furth EE, Pasha TL, Putt ME, Baloch ZW. Peroxisome proliferator-activated receptor gamma expression in follicular-patterned thyroid lesions. Caveats for the use of immunohistochemical studies. Am J Clin Pathol. 2003;120(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  35. Saleh HA, ** B, Barnwell J, Alzohaili O. Utility of immunohistochemical markers in differentiating benign from malignant follicular-derived thyroid nodules. Diagn Pathol. 2010;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mase T, Funahashi H, Koshikawa T, Imai T, Nara Y, Tanaka Y, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J. 2003;50(2):173–7.

    Article  PubMed  Google Scholar 

  37. de Matos PS, Ferreira AP, de Oliveira FF, Assumpcao LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology. 2005;47(4):391–401.

    Article  PubMed  Google Scholar 

  38. Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol. 2001;27(7):631–5.

    Article  CAS  PubMed  Google Scholar 

  39. Kawachi K, Matsushita Y, Yonezawa S, Nakano S, Shirao K, Natsugoe S, et al. Galectin-3 expression in various thyroid neoplasms and its possible role in metastasis formation. Hum Pathol. 2000;31(4):428–33.

    Article  CAS  PubMed  Google Scholar 

  40. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol. 2005;18(4):541–6.

    Article  CAS  PubMed  Google Scholar 

  41. Coli A, Bigotti G, Zucchetti F, Negro F, Massi G. Galectin-3, a marker of well-differentiated thyroid carcinoma, is expressed in thyroid nodules with cytological atypia. Histopathology. 2002;40(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  42. Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM, Baloch ZW. Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med. 2002;126(6):710–3.

    Article  CAS  PubMed  Google Scholar 

  43. Hesse E, Musholt PB, Potter E, Petrich T, Wehmeier M, von Wasielewski R, et al. Oncofoetal fibronectin--a tumour-specific marker in detecting minimal residual disease in differentiated thyroid carcinoma. Br J Cancer. 2005;93(5):565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sugenoya A, Usuda N, Adachi W, Oohashi M, Nagata T, Iida F. Immunohistochemical studies on the localization of fibronectin in human thyroid neoplastic tissues. Endocrinol Jpn. 1988;35(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  45. Kajita S, Ruebel KH, Casey MB, Nakamura N, Lloyd RV. Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth. Mod Pathol. 2005;18(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lo CY, Lam KY, Leung PP, Luk JM. High prevalence of cyclooxygenase 2 expression in papillary thyroid carcinoma. Eur J Endocrinol. 2005;152(4):545–50.

    Article  CAS  PubMed  Google Scholar 

  47. Ito Y, Yoshida H, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. Cyclooxygenase-2 expression in thyroid neoplasms. Histopathology. 2003;42(5):492–7.

    Article  CAS  PubMed  Google Scholar 

  48. Haynik DM, Prayson RA. Immunohistochemical expression of cyclooxygenase 2 in follicular carcinomas of the thyroid. Arch Pathol Lab Med. 2005;129(6):736–41.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson NW, Pambakian H, Richardson TC, Stokoe MR, Makin CA, Heyderman E. Epithelial markers in thyroid carcinoma: an immunoperoxidase study. Histopathology. 1986;10(8):815–29.

    Article  CAS  PubMed  Google Scholar 

  50. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001;14(4):338–42.

    Article  CAS  PubMed  Google Scholar 

  51. Choi YL, Kim MK, Suh JW, Han J, Kim JH, Yang JH, et al. Immunoexpression of HBME-1, high molecular weight cytokeratin, cytokeratin 19, thyroid transcription factor-1, and E-cadherin in thyroid carcinomas. J Korean Med Sci. 2005;20(5):853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baloch ZW, Abraham S, Roberts S, LiVolsi VA. Differential expression of cytokeratins in follicular variant of papillary carcinoma: an immunohistochemical study and its diagnostic utility. Hum Pathol. 1999;30(10):1166–71.

    Article  CAS  PubMed  Google Scholar 

  53. Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol. 2001;116(5):696–702.

    Article  CAS  PubMed  Google Scholar 

  54. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima FM, Del Giglio A, da Silva Pinhal MA. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Enriquez ML, Ende LB, Zhang PJ, Montone KT, LiVolsi VA. CDX2 expression in columnar cell variant of papillary thyroid carcinoma [USCAP abstract 561]. Mod Pathol. 2010;23(1S):127A.

    Google Scholar 

  56. Ishigaki K, Namba H, Nakashima M, Nakayama T, Mitsutake N, Hayashi T, et al. Aberrant localization of beta-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J Clin Endocrinol Metab. 2002;87(7):3433–40.

    CAS  PubMed  Google Scholar 

  57. Ferreiro JA, Hay ID, Lloyd RV. Columnar cell carcinoma of the thyroid: report of three additional cases. Hum Pathol. 1996;27(11):1156–60.

    Article  CAS  PubMed  Google Scholar 

  58. Wenig BM, Thompson LD, Adair CF, Shmookler B, Heffess CS. Thyroid papillary carcinoma of columnar cell type: a clinicopathologic study of 16 cases. Cancer. 1998;82(4):740–53.

    Article  CAS  PubMed  Google Scholar 

  59. Prasad ML, Pellegata NS, Kloos RT, Barbacioru C, Huang Y, de la Chapelle A. CITED1 protein expression suggests papillary thyroid carcinoma in high throughput tissue microarray-based study. Thyroid. 2004;14(3):169–75.

    Article  CAS  PubMed  Google Scholar 

  60. Liu YY, Morreau H, Kievit J, Romijn JA, Carrasco N, Smit JW. Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-{gamma}, and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma. Eur J Endocrinol. 2008;158(3):375–84.

    Article  CAS  PubMed  Google Scholar 

  61. Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol. 2005;18(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  62. Scognamiglio T, Hyjek E, Kao J, Chen YT. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol. 2006;126(5):700–8.

    Article  CAS  PubMed  Google Scholar 

  63. Rezk S, Brynes RK, Nelson V, Thein M, Patwardhan N, Fischer A, et al. Beta-catenin expression in thyroid follicular lesions: potential role in nuclear envelope changes in papillary carcinomas. Endocr Pathol. 2004;15(4):329–37.

    Article  CAS  PubMed  Google Scholar 

  64. Rezk S, Khan A. Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol. 2005;13(3):256–64.

    Article  PubMed  Google Scholar 

  65. Ruggeri RM, Campennì A, Baldari S, Trimarchi F, Trovato M. What is new on thyroid cancer biomarkers. Biomark Insights. 2008;3:237–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paunovic I, Isic T, Havelka M, Tatic S, Cvejic D, Savin S. Combined immunohistochemistry for thyroid peroxidase, galectin-3, CK19 and HBME-1 in differential diagnosis of thyroid tumors. AMIS. 2012;120(5):368–79.

    CAS  Google Scholar 

  67. Rossi ED, Straccia P, Palumbo M, Stigliano E, Revelli L, Lombardi CP, et al. Diagnostic and prognostic role of HBME-1, galectin-3, and β-catenin in poorly differentiated and anaplastic thyroid carcinomas. Appl Immunohistochem Mol Morphol. 2013;21(3):237–41.

    Article  CAS  PubMed  Google Scholar 

  68. Nechifor-Boila A, Borda A, Sassolas G, Hafdi-Nejjari Z, Borson-Chazot F, Lifante JC, et al. Immunohistochemical markers in the diagnosis of papillary thyroid carcinomas: the promising role of combined immunostaining using HBME-1 and CD56. Pathol Res Pract. 2013;209(9):585–92.

    Article  CAS  PubMed  Google Scholar 

  69. Cubas R, Li M, Chen C, Yao Q. Trop2: a possible therapeutic target for late stage epithelial carcinomas. Biochim Biophys Acta. 2009;1796(2):309–14.

    CAS  PubMed  Google Scholar 

  70. Lipinski M, Parks DR, Rouse RV, Herzenberg LA. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proct Natl Acad Sci U S A. 1981;78(8):5147–50.

    Article  CAS  Google Scholar 

  71. Alberti S, Miotti S, Stella M, Klein CE, Fornaro M, Menard S, et al. Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2. Hybridoma. 1992;11(5):539–45.

    Article  CAS  PubMed  Google Scholar 

  72. Pak MG, Shin DH, Lee CH, Lee MK. Significance of EpCAM and TROP2 expression in non-small cell lung cancer. World J Surg Oncol. 2012;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fornaro M, Dell'Arciprete R, Stella M, Bucci C, Nutini M, Capri MG, et al. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas. Int J Cancer. 1995;62(5):610–8.

    Article  CAS  PubMed  Google Scholar 

  74. Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32(2):222–33.

    Article  CAS  PubMed  Google Scholar 

  75. Wiseman SM, Melck A, Masoudi H, Ghaidi F, Goldstein L, Gown A, et al. Molecular phenoty** of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis. Ann Surg Oncol. 2008;15(10):2811–26.

    Article  PubMed  Google Scholar 

  76. Asa SL. The role of immunohistochemical markers in the diagnosis of follicular-patterned lesions of the thyroid. Endocr Pathol. 2005;16(4):295–309.

    Article  PubMed  Google Scholar 

  77. Lantsov D, Meirmanov S, Nakashima M, Kondo H, Saenko V, Naruke Y, et al. Cyclin D1 overexpression in thyroid papillary microcarcinoma: its association with tumour size and aberrant beta-catenin expression. Histopathology. 2005;47(3):248–56.

    Article  CAS  PubMed  Google Scholar 

  78. Casey MB, Lohse CM, Lloyd RV. Distinction between papillary thyroid hyperplasia and papillary thyroid carcinoma by immunohistochemical staining for cytokeratin 19, galectin-3, and HBME-1. Endocr Pathol. 2003;14(1):55–60.

    Article  PubMed  Google Scholar 

  79. Cameron BR, Berean KW. Cytokeratin subtypes in thyroid tumours: immunohistochemical study with emphasis on the follicular variant of papillary carcinoma. J Otolaryngol. 2003;32(5):319–22.

    Article  PubMed  Google Scholar 

  80. Miettinen M, Kovatich AJ, Karkkainen P. Keratin subsets in papillary and follicular thyroid lesions. A paraffin section analysis with diagnostic implications. Virchows Arch. 1997;431(6):407–13.

    Article  CAS  PubMed  Google Scholar 

  81. Cvejic D, Savin S, Golubovic S, Paunovic I, Tatic S, Havelka M. Galectin-3 and carcinoembryonic antigen expression in medullary thyroid carcinoma: possible relation to tumour progression. Histopathology. 2000;37(6):530–5.

    Article  CAS  PubMed  Google Scholar 

  82. Katoh R, Miyagi E, Nakamura N, Li X, Suzuki K, Kakudo K, et al. Expression of thyroid transcription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Hum Pathol. 2000;31(3):386–93.

    Article  CAS  PubMed  Google Scholar 

  83. Erickson LA, Lloyd RV. Practical markers used in the diagnosis of endocrine tumors. Adv Anat Pathol. 2004;11(4):175–89.

    Article  CAS  PubMed  Google Scholar 

  84. Baloch ZW, LiVolsi VA. Neuroendocrine tumors of the thyroid gland. Am J Clin Pathol. 2001;115(Suppl):S56–67.

    PubMed  Google Scholar 

  85. Saad MF, Fritsche HA Jr, Samaan NA. Diagnostic and prognostic values of carcinoembryonic antigen in medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 1984;58(5):889–94.

    Article  CAS  PubMed  Google Scholar 

  86. Talerman A, Lindeman J, Kievit-Tyson PA, Droge-Droppert C. Demonstration of calcitonin and carcinoembryonic antigen (CEA) in medullary carcinoma of the thyroid (MCT) by immunoperoxidase technique. Histopathology. 1979;3(6):503–10.

    Article  CAS  PubMed  Google Scholar 

  87. Lloyd RV, Sisson JC, Marangos PJ. Calcitonin, carcinoembryonic antigen and neuron-specific enolase in medullary thyroid carcinoma. Cancer. 1983;51(12):2234–9.

    Article  CAS  PubMed  Google Scholar 

  88. Dasovic-Knezevic M, Bormer O, Holm R, Hoie J, Sobrinho-Simoes M, Nesland JM. Carcinoembryonic antigen in medullary thyroid carcinoma: an immunohistochemical study applying six novel monoclonal antibodies. Mod Pathol. 1989;2(6):610–7.

    CAS  PubMed  Google Scholar 

  89. Uribe M, Fenoglio-Preiser CM, Grimes M, Feind C. Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol. 1985;9(8):577–94.

    Article  CAS  PubMed  Google Scholar 

  90. Schroder S, Kloppel G. Carcinoembryonic antigen and nonspecific cross-reacting antigen in thyroid cancer. An immunocytochemical study using polyclonal and monoclonal antibodies. Am J Surg Pathol. 1987;11(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  91. Satoh F, Umemura S, Yasuda M, Osamura RY. Neuroendocrine marker expression in thyroid epithelial tumors. Endocr Pathol. 2001;12(3):291–9.

    Article  CAS  PubMed  Google Scholar 

  92. Hirsch MS, Faquin WC, Krane JF. Thyroid transcription factor-1, but not p53, is helpful in distinguishing moderately differentiated neuroendocrine carcinoma of the larynx from medullary carcinoma of the thyroid. Mod Pathol. 2004;17(6):631–6.

    Article  CAS  PubMed  Google Scholar 

  93. Osamura RY, Yasuda O, Kawakami T, Itoh Y, Inada K, Kakudo K. Immunoelectron microscopic demonstration of regulated pathway for calcitonin and constitutive pathway for carcinoembryonic antigen in the same cells of human medullary carcinomas of thyroid glands. Mod Pathol. 1997;10(1):7–11.

    CAS  PubMed  Google Scholar 

  94. Kargi A, Yorukoglu AS, Cakalagaoglu EM. Neuroendocrine differentiation in non-neuroendocrine thyroid carcinoma. Thyroid. 1996;6(3):207–10.

    CAS  PubMed  Google Scholar 

  95. Kimura N, Nakazato Y, Nagura H, Sasano N. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med. 1990;114(5):506–10.

    CAS  PubMed  Google Scholar 

  96. Sikri KL, Varndell IM, Hamid QA, Wilson BS, Kameya T, Ponder BA, et al. Medullary carcinoma of the thyroid. An immunocytochemical and histochemical study of 25 cases using eight separate markers. Cancer. 1985;56(10):2481–91.

    Article  CAS  PubMed  Google Scholar 

  97. DeLellis RA, Rule AH, Spiler I, Nathanson L, Tashjian AH Jr, Wolfe HJ. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol. 1978;70(4):587–94.

    Article  CAS  PubMed  Google Scholar 

  98. Schmid KW, Fischer-Colbrie R, Hagn C, Jasani B, Williams ED, Winkler H. Chromogranin A and B and secretogranin II in medullary carcinomas of the thyroid. Am J Surg Pathol. 1987;11(7):551–6.

    Article  CAS  PubMed  Google Scholar 

  99. DeLellis RA, Moore FM, Wolfe HJ. Thyroglobulin immunoreactivity in human medullary thyroid carcinoma. Lab Investig. 1983;48:20A.

    Google Scholar 

  100. Ordonez NG. Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. Adv Anat Pathol. 2000;7(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  101. Asioli S, Erickson LA, Righi A, ** L, Volante M, Jenkins S, et al. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol. 2010;23(9):1269–78.

    Article  PubMed  Google Scholar 

  102. Pilotti S, Collini P, Del Bo R, Cattoretti G, Pierotti MA, Rilke F. A novel panel of antibodies that segregates immunocytochemically poorly differentiated carcinoma from undifferentiated carcinoma of the thyroid gland. Am J Surg Pathol. 1994;18(10):1054–64.

    Article  CAS  PubMed  Google Scholar 

  103. Agarwal S, Sharma MC, Aron M, Sarkar C, Agarwal N, Chumber S. Poorly differentiated thyroid carcinoma with rhabdoid phenotype: a diagnostic dilemma--report of a rare case. Endocr Pathol. 2006;17(4):399–405.

    Article  CAS  PubMed  Google Scholar 

  104. Akslen LA, LiVolsi VA. Poorly differentiated thyroid carcinoma--it is important. Am J Surg Pathol. 2000;24(2):310–3.

    Article  CAS  PubMed  Google Scholar 

  105. Tallini G, Garcia-Rostan G, Herrero A, Zelterman D, Viale G, Bosari S, et al. Downregulation of p27KIP1 and Ki67/Mib1 labeling index support the classification of thyroid carcinoma into prognostically relevant categories. Am J Surg Pathol. 1999;23(6):678–85.

    Article  CAS  PubMed  Google Scholar 

  106. DeLellis RA, Lloyd RV, Heitz PU, Eng C, editors. Pathology and genetics, tumours of endocrine organs, World Health Organization classification tumours. Lyon: IARC Press; 2004.

    Google Scholar 

  107. Decaussin M, Bernard MH, Adeleine P, Treilleux I, Peix JL, Pugeat M, et al. Thyroid carcinomas with distant metastases: a review of 111 cases with emphasis on the prognostic significance of an insular component. Am J Surg Pathol. 2002;26(8):1007–15.

    Article  PubMed  Google Scholar 

  108. Volante M, Landolfi S, Chiusa L, Palestini N, Motta M, Codegone A, et al. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer. 2004;100(5):950–7.

    Article  PubMed  Google Scholar 

  109. Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006;106(6):1286–95.

    Article  PubMed  Google Scholar 

  110. Wang S, Wuu J, Savas L, Patwardhan N, Khan A. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum Pathol. 1998;29(11):1304–9.

    Article  CAS  PubMed  Google Scholar 

  111. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91(1):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jossart GH, Epstein HD, Shaver JK, Weier HU, Greulich KM, Tezelman S, et al. Immunocytochemical detection of p53 in human thyroid carcinomas is associated with mutation and immortalization of cell lines. J Clin Endocrinol Metab. 1996;81(10):3498–504.

    CAS  PubMed  Google Scholar 

  113. Rocha AS, Soares P, Fonseca E, Cameselle-Teijeiro J, Oliveira MC, Sobrinho-Simoes M. E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology. 2003;42(6):580–7.

    Article  CAS  PubMed  Google Scholar 

  114. Miettinen M, Franssila KO. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol. 2000;31(9):1139–45.

    Article  CAS  PubMed  Google Scholar 

  115. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016–23.

    Article  PubMed  Google Scholar 

  116. Gasbarri A, Martegani MP, Del Prete F, Lucante T, Natali PG, Bartolazzi A. Galectin-3 and CD44v6 isoforms in the preoperative evaluation of thyroid nodules. J Clin Oncol. 1999;17(11):3494–502.

    Article  CAS  PubMed  Google Scholar 

  117. Feilchenfeldt J, Totsch M, Sheu SY, Robert J, Spiliopoulos A, Frilling A, et al. Expression of galectin-3 in normal and malignant thyroid tissue by quantitative PCR and immunohistochemistry. Mod Pathol. 2003;16(11):1117–23.

    Article  PubMed  Google Scholar 

  118. Ordonez NG, El-Naggar AK, Hickey RC, Samaan NA. Anaplastic thyroid carcinoma. Immunocytochemical study of 32 cases. Am J Clin Pathol. 1991;96(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  119. Aratake Y, Nomura H, Kotani T, Marutsuka K, Kobayashi K, Kuma K, et al. Coexistent anaplastic and differentiated thyroid carcinoma: an immunohistochemical study. Am J Clin Pathol. 2006;125(3):399–406.

    Article  PubMed  Google Scholar 

  120. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer. 2005;103(11):2261–8.

    Article  CAS  PubMed  Google Scholar 

  121. Venkatesh YS, Ordonez NG, Schultz PN, Hickey RC, Goepfert H, Samaan NA. Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer. 1990;66(2):321–30.

    Article  CAS  PubMed  Google Scholar 

  122. Lacroix L, Mian C, Barrier T, Talbot M, Caillou B, Schlumberger M, et al. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol. 2004;151(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  123. LiVolsi VA, Brooks JJ, Arendash-Durand B. Anaplastic thyroid tumors. Immunohistology. Am J Clin Pathol. 1987;87(4):434–42.

    Article  CAS  PubMed  Google Scholar 

  124. Hurlimann J, Gardiol D, Scazziga B. Immunohistology of anaplastic thyroid carcinoma. A study of 43 cases. Histopathology. 1987;11(6):567–80.

    Article  CAS  PubMed  Google Scholar 

  125. Totsch M, Dobler G, Feichtinger H, Sandbichler P, Ladurner D, Schmid KW. Malignant hemangioendothelioma of the thyroid. Its immunohistochemical discrimination from undifferentiated thyroid carcinoma. Am J Surg Pathol. 1990;14(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  126. Albores-Saavedra J, Nadji M, Civantos F, Morales AR. Thyroglobulin in carcinoma of the thyroid: an immunohistochemical study. Hum Pathol. 1983;14(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  127. Ralfkiaer N, Gatter KC, Alcock C, Heryet A, Ralfkiaer E, Mason DY. The value of immunocytochemical methods in the differential diagnosis of anaplastic thyroid tumours. Br J Cancer. 1985;52(2):167–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Faggiano A, Talbot M, Baudin E, Bidart JM, Schlumberger M, Caillou B. Differential expression of galectin 3 in solid cell nests and C cells of human thyroid. J Clin Pathol. 2003;56(2):142–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Reimann JD, Dorfman DM, Nose V. Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study: evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol. 2006;30(8):994–1001.

    Article  PubMed  Google Scholar 

  130. Faggiano A, Talbot M, Lacroix L, Bidart JM, Baudin E, Schlumberger M, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol. 2002;57(6):813–9.

    Article  CAS  Google Scholar 

  131. Reis-Filho JS, Preto A, Soares P, Ricardo S, Cameselle-Teijeiro J, Sobrinho-Simoes M. p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin. Mod Pathol. 2003;16(1):43–8.

    Article  PubMed  Google Scholar 

  132. Cameselle-Teijeiro J, Varela-Duran J, Sambade C, Villanueva JP, Varela-Nunez R, Sobrinho-Simoes M. Solid cell nests of the thyroid: light microscopy and immunohistochemical profile. Hum Pathol. 1994;25(7):684–93.

    Article  CAS  PubMed  Google Scholar 

  133. Mizukami Y, Nonomura A, Michigishi T, Noguchi M, Hashimoto T, Nakamura S, et al. Solid cell nests of the thyroid. A histologic and immunohistochemical study. Am J Clin Pathol. 1994;101(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  134. Burstein DE, Nagi C, Wang BY, Unger P. Immunohistochemical detection of p53 homolog p63 in solid cell nests, papillary thyroid carcinoma, and Hashimoto's thyroiditis: a stem cell hypothesis of papillary carcinoma oncogenesis. Hum Pathol. 2004;35(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  135. Burstein DE, Unger P, Nagi C, Wang BY. Thinking "out of the nest"--a reply to "a stem-cell role for thyroid solid cell nests [letter]". Hum Pathol. 2005;36(5):591–2.

    Article  PubMed  Google Scholar 

  136. Cameselle-Teijeiro J, Preto A, Soares P, Sobrinho-Simoes M. A stem cell role for thyroid solid cell nests. Hum Pathol. 2005;36(5):590–1.

    Article  PubMed  Google Scholar 

  137. Asioli S, Erickson LA, Lloyd RV. Solid cell nests in Hashimoto's thyroiditis sharing features with papillary thyroid microcarcinoma. Endocr Pathol. 2009;20(4):197–203.

    Article  CAS  PubMed  Google Scholar 

  138. Unger P, Ewart M, Wang BY, Gan L, Kohtz DS, Burstein DE. Expression of p63 in papillary thyroid carcinoma and in Hashimoto's thyroiditis: a pathobiologic link? Hum Pathol. 2003;34(8):764–9.

    Article  CAS  PubMed  Google Scholar 

  139. Vollenweider I, Hedinger C. Solid cell nests (SCN) in Hashimoto's thyroiditis. Virchows Arch A Pathol Anat Histopathol. 1988;412(4):357–63.

    Article  CAS  PubMed  Google Scholar 

  140. Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P, et al. Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol. 2004;17(7):819–26.

    Article  CAS  PubMed  Google Scholar 

  141. Lenggenhager D, Maggio EM, Moch H, Rössle M. HBME-1 expression in hyalinizing trabecular tumours of the thyroid gland. Histopathology. 2013;62(7):1092–7.

    Article  PubMed  Google Scholar 

  142. Gaffney RL, Carney JA, Sebo TJ, Erickson LA, Volante M, Papotti M, et al. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol. 2003;27(4):494–8.

    Article  PubMed  Google Scholar 

  143. Cheung CC, Boerner SL, MacMillan CM, Ramyar L, Asa SL. Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol. 2000;24(12):1622–6.

    Article  CAS  PubMed  Google Scholar 

  144. Lloyd RV. Hyalinizing trabecular tumors of the thyroid: a variant of papillary carcinoma? Adv Anat Pathol. 2002;9(1):7–11.

    Article  PubMed  Google Scholar 

  145. Hirokawa M, Shimizu M, Manabe T, Kuroda M, Mizoguchi Y. Hyalinizing trabecular adenoma of the thyroid: its unusual cytoplasmic immunopositivity for MIB1. Pathol Int. 1995;45(5):399–401.

    Article  CAS  PubMed  Google Scholar 

  146. Hirokawa M, Carney JA. Cell membrane and cytoplasmic staining for MIB-1 in hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol. 2000;24(4):575–8.

    Article  CAS  PubMed  Google Scholar 

  147. Galgano MT, Mills SE, Stelow EB. Hyalinizing trabecular adenoma of the thyroid revisited: a histologic and immunohistochemical study of thyroid lesions with prominent trabecular architecture and sclerosis. Am J Surg Pathol. 2006;30(10):1269–73.

    Article  PubMed  Google Scholar 

  148. Carney JA. Hyalinizing trabecular tumors of the thyroid gland: quadruply described but not by the discoverer. Am J Surg Pathol. 2008;32(4):622–34.

    Article  PubMed  Google Scholar 

  149. Casey MB, Sebo TJ, Carney JA. Hyalinizing trabecular adenoma of the thyroid gland identification through MIB-1 staining of fine-needle aspiration biopsy smears. Am J Clin Pathol. 2004;122(4):506–10.

    Article  PubMed  Google Scholar 

  150. Hirokawa M, Carney JA, Ohtsuki Y. Hyalinizing trabecular adenoma and papillary carcinoma of the thyroid gland express different cytokeratin patterns. Am J Surg Pathol. 2000;24(6):877–81.

    Article  CAS  PubMed  Google Scholar 

  151. Papotti M, Volante M, Giuliano A, Fassina A, Fusco A, Bussolati G, et al. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol. 2000;24(12):1615–21.

    Article  CAS  PubMed  Google Scholar 

  152. LiVolsi VA. Hyalinizing trabecular tumor of the thyroid: adenoma, carcinoma, or neoplasm of uncertain malignant potential? Am J Surg Pathol. 2000;24(12):1683–4.

    Article  CAS  PubMed  Google Scholar 

  153. Nose V, Volante M, Papotti M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol. 2008;19(1):1–8.

    Article  PubMed  Google Scholar 

  154. Papotti M, Riella P, Montemurro F, Pietribiasi F, Bussolati G. Immunophenotypic heterogeneity of hyalinizing trabecular tumours of the thyroid. Histopathology. 1997;31(6):525–33.

    Article  CAS  PubMed  Google Scholar 

  155. Katoh R, Jasani B, Williams ED. Hyalinizing trabecular adenoma of the thyroid. A report of three cases with immunohistochemical and ultrastructural studies. Histopathology. 1989;15(3):211–24.

    Article  CAS  PubMed  Google Scholar 

  156. Leonardo E, Volante M, Barbareschi M, Cavazza A, Dei Tos AP, Bussolati G, et al. Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact? Appl Immunohistochem Molecul Morphol. 2007;15(2):220–3.

    Article  CAS  Google Scholar 

  157. Fonseca E, Nesland JM, Sobrinho-Simoes M. Expression of stratified epithelial-type cytokeratins in hyalinizing trabecular adenomas supports their relationship with papillary carcinomas of the thyroid. Histopathology. 1997;31(4):330–5.

    Article  CAS  PubMed  Google Scholar 

  158. LaGuette J, Matias-Guiu X, Rosai J. Thyroid paraganglioma: a clinicopathologic and immunohistochemical study of three cases. Am J Surg Pathol. 1997;21(7):748–53.

    Article  CAS  PubMed  Google Scholar 

  159. Yano Y, Nagahama M, Sugino K, Ito K, Kameyama K, Ito K. Paraganglioma of the thyroid: report of a male case with ultrasonographic imagings, cytologic, histologic, and immunohistochemical features. Thyroid. 2007;17(6):575–8.

    Article  PubMed  Google Scholar 

  160. Bockhorn M, Sheu SY, Frilling A, Molmenti E, Schmid KW, Broelsch CE. Paraganglioma-like medullary thyroid carcinoma: a rare entity. Thyroid. 2005;15(12):1363–7.

    Article  PubMed  Google Scholar 

  161. Levy MT, Braun JT, Pennant M, Thompson LD. Primary paraganglioma of the parathyroid: a case report and clinicopathologic review. Head Neck Pathol. 2010;4(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  162. Ikeda T, Satoh M, Azuma K, Sawada N, Mori M. Medullary thyroid carcinoma with a paraganglioma-like pattern and melanin production: a case report with ultrastructural and immunohistochemical studies. Arch Pathol Lab Med. 1998;122(6):555–8.

    CAS  PubMed  Google Scholar 

  163. Erem C, Kocak M, Nuhoglu I, Cobanoglu U, Ucuncu O, Okatan BK. Primary thyroid paraganglioma presenting with double thyroid nodule: a case report. Endocrine. 2009;36(3):368–71.

    Article  CAS  PubMed  Google Scholar 

  164. Corrado S, Montanini V, De Gaetani C, Borghi F, Papi G. Primary paraganglioma of the thyroid gland. J Endocrinol Investig. 2004;27(8):788–92.

    Article  CAS  Google Scholar 

  165. Gonzalez Poggioli N, Lopez Amado M, Pimentel MT. Paraganglioma of the thyroid gland: a rare entity. Endocr Pathol. 2009;20(1):62–5.

    Article  PubMed  Google Scholar 

  166. Johnson TL, Zarbo RJ, Lloyd RV, Crissman JD. Paragangliomas of the head and neck: immunohistochemical neuroendocrine and intermediate filament ty**. Mod Pathol. 1988;1(3):216–23.

    CAS  PubMed  Google Scholar 

  167. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Surg Pathol. 2012;138(1):57–64.

    Google Scholar 

  168. Ordóñez NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol. 2013;20(5):352–60.

    Article  PubMed  CAS  Google Scholar 

  169. Nonaka D, Wang BY, Edmondson D, Beckett E, Sun CC. A study of gata3 and phox2b expression in tumors of the autonomic nervous system. Am J Surg Pathol. 2013;37(8):1236–41.

    Article  PubMed  Google Scholar 

  170. Nascimento MC, Bisi H, Alves VA, Longatto-Filho A, Kanamura CT, Medeiros-Neto G. Differential reactivity for galectin-3 in Hurthle cell adenomas and carcinomas. Endocr Pathol. 2001;12(3):275–9.

    Article  CAS  PubMed  Google Scholar 

  171. Montone KT, Baloch ZW, LiVolsi VA. The thyroid Hurthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review. Arch Pathol Lab Med. 2008;132(8):1241–50.

    Article  PubMed  Google Scholar 

  172. Abu-Alfa AK, Straus FH 2nd, Montag AG. An immunohistochemical study of thyroid Hurthle cells and their neoplasms: the roles of S-100 and HMB-45 proteins. Mod Pathol. 1994;7(5):529–32.

    CAS  PubMed  Google Scholar 

  173. Erickson LA, ** L, Goellner JR, Lohse C, Pankratz VS, Zukerberg LR, et al. Pathologic features, proliferative activity, and cyclin D1 expression in Hurthle cell neoplasms of the thyroid. Mod Pathol. 2000;13(2):186–92.

    Article  CAS  PubMed  Google Scholar 

  174. Hoos A, Stojadinovic A, Singh B, Dudas ME, Leung DH, Shaha AR, et al. Clinical significance of molecular expression profiles of Hurthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am J Pathol. 2002;160(1):175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Katoh R, Harach HR, Williams ED. Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J Pathol. 1998;186(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  176. Baloch ZW, Solomon AC, LiVolsi VA. Primary mucoepidermoid carcinoma and sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid gland: a report of nine cases. Mod Pathol. 2000;13(7):802–7.

    Article  CAS  PubMed  Google Scholar 

  177. Wenig BM, Adair CF, Heffess CS. Primary mucoepidermoid carcinoma of the thyroid gland: a report of six cases and a review of the literature of a follicular epithelial-derived tumor. Hum Pathol. 1995;26(10):1099–108.

    Article  CAS  PubMed  Google Scholar 

  178. Geisinger KR, Steffee CH, McGee RS, Woodruff RD, Buss DH. The cytomorphologic features of sclerosing mucoepidermoid carcinoma of the thyroid gland with eosinophilia. Am J Clin Pathol. 1998;109(3):294–301.

    Article  CAS  PubMed  Google Scholar 

  179. Sim SJ, Ro JY, Ordonez NG, Cleary KR, Ayala AG. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: report of two patients, one with distant metastasis, and review of the literature. Hum Pathol. 1997;28(9):1091–6.

    Article  CAS  PubMed  Google Scholar 

  180. Shehadeh NJ, Vernick J, Lonardo F, Madan SK, Jacobs JR, Yoo GH, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: a case report and review of the literature. Am J Otolaryngol. 2004;25(1):48–53.

    Article  PubMed  Google Scholar 

  181. Solomon AC, Baloch ZW, Salhany KE, Mandel S, Weber RS, LiVolsi VA. Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia: mimic of Hodgkin disease in nodal metastases. Arch Pathol Lab Med. 2000;124(3):446–9.

    Article  CAS  PubMed  Google Scholar 

  182. Rhatigan RM, Roque JL, Bucher RL. Mucoepidermoid carcinoma of the thyroid gland. Cancer. 1977;39(1):210–4.

    Article  CAS  PubMed  Google Scholar 

  183. Tanada F, Massarelli G, Bosincu L. Primary mucoepidermoid carcinoma of the thyroid gland. Surg Pathol. 1990;3:317–24.

    Google Scholar 

  184. Chan JK, Albores-Saavedra J, Battifora H, Carcangiu ML, Rosai J. Sclerosing mucoepidermoid thyroid carcinoma with eosinophilia. A distinctive low-grade malignancy arising from the metaplastic follicles of Hashimoto's thyroiditis. Am J Surg Pathol. 1991;15(5):438–48.

    Article  CAS  PubMed  Google Scholar 

  185. Miranda RN, Myint MA, Gnepp DR. Composite follicular variant of papillary carcinoma and mucoepidermoid carcinoma of the thyroid. Report of a case and review of the literature. Am J Surg Pathol. 1995;19(10):1209–15.

    Article  CAS  PubMed  Google Scholar 

  186. Cameselle-Teijeiro J, Febles-Perez C, Sobrinho-Simoes M. Papillary and mucoepidermoid carcinoma of the thyroid with anaplastic transformation: a case report with histologic and immunohistochemical findings that support a provocative histogenetic hypothesis. Pathol Res Pract. 1995;191(12):1214–21.

    Article  CAS  PubMed  Google Scholar 

  187. Viciana MJ, Galera-Davidson H, Martin-Lacave I, Segura DI, Loizaga JM. Papillary carcinoma of the thyroid with mucoepidermoid differentiation. Arch Pathol Lab Med. 1996;120(4):397–8.

    CAS  PubMed  Google Scholar 

  188. Albores-Saavedra J, Gu X, Luna MA. Clear cells and thyroid transcription factor I reactivity in sclerosing mucoepidermoid carcinoma of the thyroid gland. Ann Diagn Pathol. 2003;7(6):348–53.

    Article  PubMed  Google Scholar 

  189. Franssila KO, Harach HR, Wasenius VM. Mucoepidermoid carcinoma of the thyroid. Histopathology. 1984;8(5):847–60.

    Article  CAS  PubMed  Google Scholar 

  190. Rocha AS, Soares P, Machado JC, Máximo V, Fonseca E, Franssila K, et al. Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Arch. 2002;440(5):498–504.

    Article  CAS  PubMed  Google Scholar 

  191. Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN, Hoang MP. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol. 2013;44(11):2563–70.

    Article  CAS  PubMed  Google Scholar 

  192. McKelvie PA, Chan F, Yu Y, Waring P, Gresshoff I, Farrell S, et al. The prognostic significance of the BRAFV600E mutation in papillary thyroid carcinoma detected by mutation-specific immunohistochemistry. Pathology. 2013;45(7):637–44.

    Article  CAS  PubMed  Google Scholar 

  193. Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, Ahn HY, Lee EK, Lee YJ, et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer. 2012;118(7):1764–73.

    Article  CAS  PubMed  Google Scholar 

  194. Zagzag J, Pollack A, Dultz L, Dhar S, Ogilvie JB, Heller KS, et al. Clinical utility of immunohistochemistry for the detection of the BRAF v600e mutation in papillary thyroid carcinoma. Surgery. 2013;154(6):1199–205.

    Article  PubMed  Google Scholar 

  195. Bullock M, O'Neill C, Chou A, Clarkson A, Dodds T, Toon C, et al. Utilization of a MAB for BRAF(V600E) detection in papillary thyroid carcinoma. Endocr Relat Cancer. 2012;19(6):779–84.

    Article  CAS  PubMed  Google Scholar 

  196. Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012;36(6):844–50.

    Article  PubMed  Google Scholar 

  197. Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 2011;122(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  198. Guyetant S, Josselin N, Savagner F, Rohmer V, Michalak S, Saint-Andre JP. C-cell hyperplasia and medullary thyroid carcinoma: clinicopathological and genetic correlations in 66 consecutive patients. Mod Pathol. 2003;16(8):756–63.

    Article  PubMed  Google Scholar 

  199. Krueger JE, Maitra A, Albores-Saavedra J. Inherited medullary microcarcinoma of the thyroid: a study of 11 cases. Am J Surg Pathol. 2000;24(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  200. Perry A, Molberg K, Albores-Saavedra J. Physiologic versus neoplastic C-cell hyperplasia of the thyroid: separation of distinct histologic and biologic entities. Cancer. 1996;77(4):750–6.

    Article  CAS  PubMed  Google Scholar 

  201. McDermott MB, Swanson PE, Wick MR. Immunostains for collagen type IV discriminate between C-cell hyperplasia and microscopic medullary carcinoma in multiple endocrine neoplasia, type 2a. Hum Pathol. 1995;26(12):1308–12.

    Article  CAS  PubMed  Google Scholar 

  202. Etit D, Faquin WC, Gaz R, Randolph G, DeLellis RA, Pilch BZ. Histopathologic and clinical features of medullary microcarcinoma and C-cell hyperplasia in prophylactic thyroidectomies for medullary carcinoma: a study of 42 cases. Arch Pathol Lab Med. 2008;132(11):1767–73.

    Article  PubMed  Google Scholar 

  203. Savin S, Cvejic D, Isic T, Paunovic I, Tatic S, Havelka M. Thyroid peroxidase immunohistochemistry in differential diagnosis of thyroid tumors. Endocr Pathol. 2006;17(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  204. Savin S, Cvejic D, Isic T, Paunovic I, Tatic S, Havelka M. Thyroid peroxidase and galectin-3 immunostaining in differentiated thyroid carcinoma with clinicopathologic correlation. Hum Pathol. 2008;39(11):1656–63.

    Article  CAS  PubMed  Google Scholar 

  205. Slosar M, Vohra P, Prasad M, Fischer A, Quinlan R, Khan A. Insulin-like growth factor mRNA binding protein 3 (IMP3) is differentially expressed in benign and malignant follicular patterned thyroid tumors. Endocr Pathol. 2009;20(3):149–57.

    Article  CAS  PubMed  Google Scholar 

  206. Huang WC, Jeng YM. IMP3 expression in thyroid carcinomas [USCPA abstract 564]. Mod Pathol. 2010;23(1S):127A.

    Google Scholar 

  207. Jakubiak-Wielganowicz M, Kubiak R, Sygut J, Pomorski L, Kordek R. Usefulness of galectin-3 immunohistochemistry in differential diagnosis between thyroid follicular carcinoma and follicular adenoma. Pol J Pathol. 2003;54(2):111–5.

    PubMed  Google Scholar 

  208. Xu XC, el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol. 1995;147(3):815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Beesley MF, McLaren KM. Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology. 2002;41(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  210. Martins L, Matsuo SE, Ebina KN, Kulcsar MA, Friguglietti CU, Kimura ET. Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors. J Clin Endocrinol Metab. 2002;87(10):4806–10.

    Article  CAS  PubMed  Google Scholar 

  211. Kovacs RB, Foldes J, Winkler G, Bodo M, Sapi Z. The investigation of galectin-3 in diseases of the thyroid gland. Eur J Endocrinol. 2003;149(5):449–53.

    Article  CAS  PubMed  Google Scholar 

  212. Bryson PC, Shores CG, Hart C, Thorne L, Patel MR, Richey L, et al. Immunohistochemical distinction of follicular thyroid adenomas and follicular carcinomas. Arch Otolaryngol Head Neck Surg. 2008;134(6):581–6.

    Article  PubMed  Google Scholar 

  213. Savin S, Cvejic D, Isic T, Paunovic I, Tatic S, Havelka M. The efficacy of the thyroid peroxidase marker for distinguishing follicular thyroid carcinoma from follicular adenoma. Exp Oncol. 2006;28(1):70–4.

    CAS  PubMed  Google Scholar 

  214. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol. 2010;176(5):2067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Rossi ED, Raffaelli M, Mule A, Pontecorvi A, Miraglia A, Lombardi CP, et al. Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology. 2006;48(7):795–800.

    Article  CAS  PubMed  Google Scholar 

  216. Koo HL, Jang J, Hong SJ, Shong Y, Gong G. Renal cell carcinoma metastatic to follicular adenoma of the thyroid gland. A case report. Acta Cytol. 2004;48(1):64–8.

    Article  PubMed  Google Scholar 

  217. Ambrosiani L, Declich P, Bellone S, Tavani E, Pacilli P, Guarneri A, et al. Thyroid metastases from renal clear cell carcinoma: a cyto-histological study of two cases. Adv Clin Pathol. 2001;5(1–2):11–6.

    CAS  Google Scholar 

  218. Carcangiu ML, Sibley RK, Rosai J. Clear cell change in primary thyroid tumors. A study of 38 cases. Am J Surg Pathol. 1985;9(10):705–22.

    Article  CAS  PubMed  Google Scholar 

  219. Nakamura N, Erickson LA, ** L, Kajita S, Zhang H, Qian X, et al. Immunohistochemical separation of follicular variant of papillary thyroid carcinoma from follicular adenoma. Endocr Pathol. 2006;17(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  220. Schelfhout LJ, Van Muijen GN, Fleuren GJ. Expression of keratin 19 distinguishes papillary thyroid carcinoma from follicular carcinomas and follicular thyroid adenoma. Am J Clin Pathol. 1989;92(5):654–8.

    Article  CAS  PubMed  Google Scholar 

  221. Vasko VV, Gaudart J, Allasia C, Savchenko V, Di Cristofaro J, Saji M, et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol. 2004;151(6):779–86.

    Article  CAS  PubMed  Google Scholar 

  222. Nasr MR, Mukhopadhyay S, Zhang S, Katzenstein AL. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: utility of HBME1 combined with CK19 immunostaining. Mod Pathol. 2006;19(12):1631–7.

    Article  CAS  PubMed  Google Scholar 

  223. Lewis JS, Ritter JH, El-Mofty S. Alternative epithelial markers in sarcomatoid carcinomas of the head and neck, lung, and bladder-p63, MOC-31, and TTF-1. Mod Pathol. 2005;18(11):1471–81.

    Article  CAS  PubMed  Google Scholar 

  224. Al-Abbadi MA, Almasri NM, Al-Quran S, Wilkinson EJ. Cytokeratin and epithelial membrane antigen expression in angiosarcomas: an immunohistochemical study of 33 cases. Arch Pathol Lab Med. 2007;131(2):288–92.

    Article  PubMed  Google Scholar 

  225. Zhang PJ, Livolsi VA, Brooks JJ. Malignant epithelioid vascular tumors of the pleura: report of a series and literature review. Hum Pathol. 2000;31(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  226. Folpe AL, Mentzel T, Lehr HA, Fisher C, Balzer BL, Weiss SW. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29(12):1558–75.

    Article  PubMed  Google Scholar 

  227. Wilson RW, Moran CA. Primary melanoma of the lung: a clinicopathologic and immunohistochemical study of eight cases. Am J Surg Pathol. 1997;21(10):1196–202.

    Article  CAS  PubMed  Google Scholar 

  228. Gupta D, Deavers MT, Silva EG, Malpica A. Malignant melanoma involving the ovary: a clinicopathologic and immunohistochemical study of 23 cases. Am J Surg Pathol. 2004;28(6):771–80.

    Article  PubMed  Google Scholar 

  229. Mills SE, Gaffey MJ, Watts JC, Swanson PE, Wick MR, LiVolsi VA, et al. Angiomatoid carcinoma and 'angiosarcoma' of the thyroid gland. A spectrum of endothelial differentiation. Am J Clin Pathol. 1994;102(3):322–30.

    Article  CAS  PubMed  Google Scholar 

  230. Kim NR, Ko YH, Sung CO. A case of coexistent angiosarcoma and follicular carcinoma of the thyroid. J Korean Med Sci. 2003;18(6):908–13.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Prasad ML, Jungbluth AA, Iversen K, Huvos AG, Busam KJ. Expression of melanocytic differentiation markers in malignant melanomas of the oral and sinonasal mucosa. Am J Surg Pathol. 2001;25(6):782–7.

    Article  CAS  PubMed  Google Scholar 

  232. Bergman R, Azzam H, Sprecher E, Manov L, Munichor M, Friedman-Birnbaum R, et al. A comparative immunohistochemical study of MART-1 expression in Spitz nevi, ordinary melanocytic nevi, and malignant melanomas. J Am Acad Dermatol. 2000;42(3):496–500.

    Article  CAS  PubMed  Google Scholar 

  233. Deyrup AT, Miettinen M, North PE, Khoury JD, Tighiouart M, Spunt SL, et al. Angiosarcomas arising in the viscera and soft tissue of children and young adults: a clinicopathologic study of 15 cases. Am J Surg Pathol. 2009;33(2):264–9.

    Article  PubMed  Google Scholar 

  234. Heerema-McKenney A, Wijnaendts LC, Pulliam JF, Lopez-Terrada D, McKenney JK, Zhu S, et al. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype. Am J Surg Pathol. 2008;32(10):1513–22.

    Article  PubMed  Google Scholar 

  235. Wang J, Tu X, Sheng W. Sclerosing rhabdomyosarcoma: a clinicopathologic and immunohistochemical study of five cases. Am J Clin Pathol. 2008;129(3):410–5.

    Article  PubMed  Google Scholar 

  236. Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, et al. An immunohistochemical algorithm to facilitate diagnosis and subty** of rhabdomyosarcoma: the Children's Oncology Group experience. Am J Surg Pathol. 2006;30(8):962–8.

    Article  PubMed  Google Scholar 

  237. Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    Article  CAS  PubMed  Google Scholar 

  238. Sebire NJ, Malone M. Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas. J Clin Pathol. 2003;56(6):412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nascimento AF, Fletcher CD. Spindle cell rhabdomyosarcoma in adults. Am J Surg Pathol. 2005;29(8):1106–13.

    Article  PubMed  Google Scholar 

  240. Furlong MA, Mentzel T, Fanburg-Smith JC. Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol. 2001;14(6):595–603.

    Article  CAS  PubMed  Google Scholar 

  241. de Saint Aubain Somerhausen N, Fletcher CD. Leiomyosarcoma of soft tissue in children: clinicopathologic analysis of 20 cases. Am J Surg Pathol. 1999;23(7):755–63.

    Article  PubMed  Google Scholar 

  242. Oda Y, Miyajima K, Kawaguchi K, Tamiya S, Oshiro Y, Hachitanda Y, et al. Pleomorphic leiomyosarcoma: clinicopathologic and immunohistochemical study with special emphasis on its distinction from ordinary leiomyosarcoma and malignant fibrous histiocytoma. Am J Surg Pathol. 2001;25(8):1030–8.

    Article  CAS  PubMed  Google Scholar 

  243. Rubin BP, Fletcher CD. Myxoid leiomyosarcoma of soft tissue, an underrecognized variant. Am J Surg Pathol. 2000;24(7):927–36.

    Article  CAS  PubMed  Google Scholar 

  244. Moon SH, Oh YL, Choi JY, Baek CH, Son YI, Jeong HS, et al. Comparison of 18F-fluorodeoxyglucose uptake with the expressions of glucose transporter type 1 and Na+/I- symporter in patients with untreated papillary thyroid carcinoma. Endocr Res. 2013;38(2):77–84.

    Article  CAS  PubMed  Google Scholar 

  245. Chandan VS, Faquin WC, Wilbur DC, Khurana KK. The role of immunolocalization of CD57 and GLUT-1 in cell blocks in fine-needle aspiration diagnosis of papillary thyroid carcinoma. Cancer. 2006;108(5):331–6.

    Article  PubMed  Google Scholar 

  246. Khan A, Baker SP, Patwardhan NA, Pullman JM. CD57 (Leu-7) expression is helpful in diagnosis of the follicular variant of papillary thyroid carcinoma. Virchows Arch. 1998;432(5):427–32.

    Article  CAS  PubMed  Google Scholar 

  247. Weiner MF, Miranda RN, Bardales RH, Mukunyadzi P, Baker SJ, Korourian S, et al. Diagnostic value of GLUT-1 immunoreactivity to distinguish benign from malignant cystic squamous lesions of the head and neck in fine-needle aspiration biopsy material. Diagn Cytopathol. 2004;31(5):294–9.

    Article  PubMed  Google Scholar 

  248. Matsumoto F, Fujii H, Abe M, Ka**o K, Kobayashi T, Matsumoto T, et al. A novel tumor marker, Niban, is expressed in subsets of thyroid tumors and Hashimoto's thyroiditis. Hum Pathol. 2006;37(12):1592–600.

    Article  CAS  PubMed  Google Scholar 

  249. Liu J, Singh B, Tallini G, Carlson DL, Katabi N, Shaha A, et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 2006;107(6):1255–64.

    Article  PubMed  Google Scholar 

  250. **ng M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.

    Article  CAS  PubMed  Google Scholar 

  251. **ng M, Vasko V, Tallini G, Larin A, Wu G, Udelsman R, et al. BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab. 2004;89(3):1365–8.

    Article  CAS  PubMed  Google Scholar 

  252. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.

    Article  CAS  PubMed  Google Scholar 

  253. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.

    Article  CAS  PubMed  Google Scholar 

  254. Santoro M, Papotti M, Chiappetta G, Garcia-Rostan G, Volante M, Johnson C, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab. 2002;87(1):370–9.

    Article  CAS  PubMed  Google Scholar 

  255. Nonaka D. A study of parathyroid transcription factor Gcm2 expression in parathyroid lesions [USCAP abstract 579]. Mod Pathol. 2010;23(1S):131A.

    Google Scholar 

  256. Pesce C, Tobia F, Carli F, Antoniotti GV. The sites of hormone storage in normal and diseased parathyroid glands: a silver impregnation and immunohistochemical study. Histopathology. 1989;15(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  257. Schmid KW, Hittmair A, Ladurner D, Sandbichler P, Gasser R, Totsch M. Chromogranin A and B in parathyroid tissue of cases of primary hyperparathyroidism: an immunohistochemical study. Virchows Arch A Pathol Anat Histopathol. 1991;418(4):295–9.

    Article  CAS  PubMed  Google Scholar 

  258. Miettinen M, Clark R, Lehto VP, Virtanen I, Damjanov I. Intermediate-filament proteins in parathyroid glands and parathyroid adenomas. Arch Pathol Lab Med. 1985;109(11):986–9.

    CAS  PubMed  Google Scholar 

  259. Hadar T, Shvero J, Yaniv E, Ram E, Shvili I, Koren R. Expression of p53, Ki-67 and Bcl-2 in parathyroid adenoma and residual normal tissue. Pathol Oncol Res. 2005;11(1):45–9.

    Article  PubMed  Google Scholar 

  260. Naccarato AG, Marcocci C, Miccoli P, Bonadio AG, Cianferotti L, Vignali E, et al. Bcl-2, p53 and MIB-1 expression in normal and neoplastic parathyroid tissues. J Endocrinol Investig. 1998;21(3):136–41.

    Article  CAS  Google Scholar 

  261. Parfitt AM, Wang Q, Palnitkar S. Rates of cell proliferation in adenomatous, suppressed, and normal parathyroid tissue: implications for pathogenesis. J Clin Endocrinol Metab. 1998;83(3):863–9.

    CAS  PubMed  Google Scholar 

  262. Farnebo F, Auer G, Farnebo LO, Teh BT, Twigg S, Aspenblad U, et al. Evaluation of retinoblastoma and Ki-67 immunostaining as diagnostic markers of benign and malignant parathyroid disease. World J Surg. 1999;23(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  263. Vargas MP, Vargas HI, Kleiner DE, Merino MJ. The role of prognostic markers (MiB-1, RB, and bcl-2) in the diagnosis of parathyroid tumors. Mod Pathol. 1997;10(1):12–7.

    CAS  PubMed  Google Scholar 

  264. DeLellis RA. Challenging lesions in the differential diagnosis of endocrine tumors: parathyroid carcinoma. Endocr Pathol. 2008;19(4):221–5.

    Article  CAS  PubMed  Google Scholar 

  265. Howell VM, Gill A, Clarkson A, Nelson AE, Dunne R, Delbridge LW, et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 2009;94(2):434–41.

    Article  CAS  PubMed  Google Scholar 

  266. Gill AJ, Clarkson A, Gimm O, Keil J, Dralle H, Howell VM, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol. 2006;30(9):1140–9.

    Article  PubMed  Google Scholar 

  267. Tan MH, Morrison C, Wang P, Yang X, Haven CJ, Zhang C, et al. Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin Cancer Res. 2004;10(19):6629–37.

    Article  CAS  PubMed  Google Scholar 

  268. Cetani F, Ambrogini E, Viacava P, Pardi E, Fanelli G, Naccarato AG, Borsari S, et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur J Endocrinol. 2007;156(5):547–54.

    Article  CAS  PubMed  Google Scholar 

  269. DeLellis RA. Parathyroid carcinoma: an overview. Adv Anat Pathol. 2005;12(2):53–61.

    Article  PubMed  Google Scholar 

  270. DeLellis RA, Mazzaglia P, Mangray S. Primary hyperparathyroidism: a current perspective. Arch Pathol Lab Med. 2008;132(8):1251–62.

    Article  PubMed  Google Scholar 

  271. Lloyd RV, Carney JA, Ferreiro JA, ** L, Thompson GB, Van Heerden JA, et al. Immunohistochemical analysis of the cell cycle-associated antigens Ki-67 and retinoblatoma protein in parathyroid carcinomas and adenomas. Endocr Pathol. 1995;6(4):279–87.

    Article  PubMed  Google Scholar 

  272. Erickson LA, ** L, Papotti M, Lloyd RV. Oxyphil parathyroid carcinomas: a clinicopathologic and immunohistochemical study of 10 cases. Am J Surg Pathol. 2002;26(3):344–9.

    Article  PubMed  Google Scholar 

  273. Erickson LA, ** L, Wollan P, Thompson GB, van Heerden JA, Lloyd RV. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol. 1999;23(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  274. Stojadinovic A, Hoos A, Nissan A, Dudas ME, Cordon-Cardo C, Shaha AR, et al. Parathyroid neoplasms: clinical, histopathological, and tissue microarray-based molecular analysis. Hum Pathol. 2003;34(1):54–64.

    Article  PubMed  Google Scholar 

  275. Futrell JM, Roth SI, Su SP, Habener JF, Segre GV, Potts JT Jr. Immunocytochemical localization of parathyroid hormone in bovine parathyroid glands and human parathyroid adenomas. Am J Pathol. 1979;94(3):615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Woodard GE, Lin L, Zhang JH, Agarwal SK, Marx SJ, Simonds WF. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene. 2005;24(7):1272–6.

    Article  CAS  PubMed  Google Scholar 

  277. Danks JA, Ebeling PR, Hayman J, Chou ST, Moseley JM, Dunlop J, et al. Parathyroid hormone-related protein: immunohistochemical localization in cancers and in normal skin. J Bone Miner Res. 1989;4(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  278. Rosol TJ, Capen CC. Tumors of the parathyroid gland and circulating parathyroid hormone-related protein associated with persistent hypercalcemia. Toxicol Pathol. 1989;17(2):346–56.

    Article  CAS  PubMed  Google Scholar 

  279. Hellman P, Karlsson-Parra A, Klareskog L, Ridefelt P, Bjerneroth G, Rastad J, et al. Expression and function of a CD4-like molecule in parathyroid tissue. Surgery. 1996;120(6):985–92.

    Article  CAS  PubMed  Google Scholar 

  280. Ordonez NG, Ibanez ML, Samaan NA, Hickey RC. Immunoperoxidase study of uncommon parathyroid tumors. Report of two cases of nonfunctioning parathyroid carcinoma and one intrathyroid parathyroid tumor-producing amyloid. Am J Surg Pathol. 1983;7(6):535–42.

    Article  CAS  PubMed  Google Scholar 

  281. Saggiorato E, Bergero N, Volante M, Bacillo E, Rosas R, Gasparri G, et al. Galectin-3 and Ki-67 expression in multiglandular parathyroid lesions. Am J Clin Pathol. 2006;126(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  282. Fernandez-Ranvier GG, Khanafshar E, Tacha D, Wong M, Kebebew E, Duh QY, et al. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer. 2009;115(2):334–44.

    Article  PubMed  Google Scholar 

  283. Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017.

    Google Scholar 

  284. Nakazawa T, Kondo T, Vuong HG, Odate T, Kawai M, Tahara I, Kasai K, Inoue T, Oishi N, Mochizuki K, Ito K, Katoh R. High expression of CD10 in anaplastic thyroid carcinomas. Histopathology. 2018;73(3):492–9.

    Article  PubMed  Google Scholar 

  285. Tomoda C, Kushima R, Takeuti E, Mukaisho K, Hattori T, Kitano H. CD10 expression is useful in the diagnosis of follicular carcinoma and follicular variant of papillary thyroid carcinoma. Thyroid. 2003;13(3):291–5.

    Article  CAS  PubMed  Google Scholar 

  286. Yegen G, Demir MA, Ertan Y, Nalbant OA, Tunçyürek M. Can CD10 be used as a diagnostic marker in thyroid pathology? Virchows Arch. 2009;454:101–5.

    Article  CAS  PubMed  Google Scholar 

  287. Mokhtari M, Ameri F. Diagnostic value of CD-10 marker in differentiation of papillary thyroid carcinoma from benign thyroid lesions. Adv Biomed Res. 2014;3:206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, et al. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol. 2013;26(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  289. Jung CW, Han KH, Seol H, , Park S, Koh JS, Lee SS, et al. Expression of cancer stem cell markers and epithelial-mesenchymal transition-related factors in anaplastic thyroid carcinoma. Int J Clin Exp Pathol 2015;8(1):560–568.

    PubMed  PubMed Central  Google Scholar 

  290. Wu J, Zhang Y, Cheng R, Gong W, Ding T, Zhai Q, et al. Expression of epithelial-mesenchymal transition regulators TWIST, SLUG and SNAIL in follicular thyroid tumors may relate to widely invasive, poorly differentiated and distant metastasis. Histopathology. 2019;74:780–91.

    Article  PubMed  Google Scholar 

  291. Nonaka D. A study of FoxA1 expression in thyroid tumors. Hum Pathol. 2017;65:217–24.

    Article  CAS  PubMed  Google Scholar 

  292. Nucera C, Eeckhoute J, Finn S, Carroll JS, Ligon AH, Priolo C, et al. FOXA1 is a potential oncogene in anaplastic thyroid carcinoma. Clin Cancer Res. 2009;15(11):3680–9.

    Article  CAS  PubMed  Google Scholar 

  293. Anwar F, Emond MJ, Schmidt RA, Hwang HC, Bronner MP. Retinoblastoma expression in thyroid neoplasms. Mod Pathol. 2000;1395:562–9.

    Article  Google Scholar 

  294. ** L, Seys AR, Zhang S, Erickson-Johnson MR, Roth CW, Evers BR, et al. Diagnostic utility of IMP3 expression in thyroid neoplasms: a quantitative RT-PCR study. Diagn Mol Pathol. 2010;19(2):63–9.

    Article  CAS  PubMed  Google Scholar 

  295. Masudo K, Suganuma N, Nakayama H, Oshima T, Rino Y, Iwasaki H, et al. EZH2 overexpression as a useful prognostic marker for aggressive behaviour in thyroid cancer. In Vivo. 2018;32(1):25–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Borbone E, Troncone G, Ferraro A, Jasencakova Z, Stojic L, Esposito F, et al. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J Clin Endocrinol Metab. 2011;96(4):1029–38.

    Article  CAS  PubMed  Google Scholar 

  297. Montemayor-Garcia C, Hardin H, Guo Z, Larrain C, Buehler D, Asioli S, et al. The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr Pathol. 2013;24(4):206–12.

    Article  CAS  PubMed  Google Scholar 

  298. Manzoni M, Roversi G, Di Bella C, Pincelli AI, Cimino V, Perotti M, et al. Solid cell nests of the thyroid gland: morphological, immunohistochemical and genetic features. Histopathology. 2016;68(6):866–74.

    Article  PubMed  Google Scholar 

  299. Gucer H, Mete O. Positivity for GATA3 and TTF-1 (SPT24), and negativity for monoclonal PAX8 expand the biomarker profile of the solid cell nests of the thyroid gland. Endocr Pathol. 2018;29(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  300. Juhlin CC, Nilsson IL, Höög A. Solid cell nests within a parathyroid gland—report of an exceptional case. Endocr Pathol. 2018;29(4):365–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Folpe AL, Lloyd RV, Bacchi CE, Rosai J. Spindle epithelial tumor with thymus-like differentiation: a morphologic, immunohistochemical, and molecular genetic study of 11 cases. Am J Surg Pathol. 2009;33(8):1179–86.

    Article  PubMed  Google Scholar 

  302. Browning L, Bailey D, Parker A. D2-40 is a sensitive and specific marker in differentiating primary adrenal cortical tumours from both metastatic clear cell renal cell carcinoma and phaeochromocytoma. J Clin Pathol. 2008;61(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  303. Chetty R, Pillay P, Jaichand V. Cytokeratin expression in adrenal phaeochromocytomas and extra-adrenal paragangliomas. J Clin Pathol. 1998;51(6):477–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Busam KJ, Iversen K, Coplan KA, Old LJ, Stockert E, Chen YT, et al. Immunoreactivity for A103, an antibody to melan-A (mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol. 1998;22(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  305. Cho EY, Ahn GH. Immunoexpression of inhibin alpha-subunit in adrenal neoplasms. Appl Immunohistochem Mol Morphol. 2001;9(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  306. Duregon E, Volante M, Giorcelli J, Terzolo M, Lalli E, Papotti M. Diagnostic and prognostic role of steroidogenic factor 1 in adrenocortical carcinoma: a validation study focusing on clinical and pathologic correlates. Hum Pathol. 2013;44(5):822–8.

    Article  CAS  PubMed  Google Scholar 

  307. Elmoneim HM, Samaka RM, Ali H. Diagnostic role of inhibin alpha-subunit and inhibin/activin beta-subunit in adrenal cortical and medullary tumors in egyptian patients. Appl Immunohistochem Mol Morphol. 2012;20(5):462–9.

    Article  PubMed  CAS  Google Scholar 

  308. Fogt F, Vortmeyer AO, Poremba C, Minda M, Harris CA, Tomaszewski JE. Bcl-2 expression in normal adrenal glands and in adrenal neoplasms. Mod Pathol. 1998;11(8):716–20.

    CAS  PubMed  Google Scholar 

  309. Fogt F, Zimmerman RL, Mulligan N, Vortmeyer AO, Poremba C, Harris CA, et al. BCL-2 expression and inhibin-A in adrenal neoplasms: a comparative study. Int J Mol Med. 1999;3(3):271–4.

    CAS  PubMed  Google Scholar 

  310. Gaffey MJ, Traweek ST, Mills SE, Travis WD, Lack EE, Medeiros LJ, et al. Cytokeratin expression in adrenocortical neoplasia: an immunohistochemical and biochemical study with implications for the differential diagnosis of adrenocortical, hepatocellular, and renal cell carcinoma. Hum Pathol. 1992;23(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  311. Ghorab Z, Jorda M, Ganjei P, Nadji M. Melan A (A103) is expressed in adrenocortical neoplasms but not in renal cell and hepatocellular carcinomas. Appl Immunohistochem Mol Morphol. 2003;11(4):330–3.

    Article  CAS  PubMed  Google Scholar 

  312. Jorda M, De MB, Nadji M. Calretinin and inhibin are useful in separating adrenocortical neoplasms from pheochromocytomas. Appl Immunohistochem Mol Morphol. 2002;10(1):67–70.

    Article  PubMed  Google Scholar 

  313. Matias-Guiu X, Prat J. Alpha-inhibin immunostaining in diagnostic pathology. Adv Anat Pathol. 1998;5(4):263–7.

    Article  CAS  PubMed  Google Scholar 

  314. McCluggage WG, Burton J, Maxwell P, Sloan JM. Immunohistochemical staining of normal, hyperplastic, and neoplastic adrenal cortex with a monoclonal antibody against alpha inhibin. J Clin Pathol. 1998;51(2):114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. McNicol AM. Histopathology and immunohistochemistry of adrenal medullary tumors and paragangliomas. Endocr Pathol. 2006;17(4):329–36.

    Article  CAS  PubMed  Google Scholar 

  316. Pelkey TJ, Frierson HF Jr, Mills SE, Stoler MH. The alpha subunit of inhibin in adrenal cortical neoplasia. Mod Pathol. 1998;11(6):516–24.

    CAS  PubMed  Google Scholar 

  317. Sbiera S, Schmull S, Assie G, Voelker HU, Kraus L, Beyer M, et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J Clin Endocrinol Metabol. 2010;95(10):E161–71.

    Article  CAS  Google Scholar 

  318. Zhang PJ, Genega EM, Tomaszewski JE, Pasha TL, LiVolsi VA. The role of calretinin, inhibin, melan-A, BCL-2, and C-kit in differentiating adrenal cortical and medullary tumors: an immunohistochemical study. Mod Pathol. 2003;16(6):591–7.

    Article  PubMed  Google Scholar 

  319. Enriquez ML, Lal P, Ziober A, Wang L, Tomaszewski JE, Bing Z. The use of immunohistochemical expression of SF-1 and EMA in distinguishing adrenocortical tumors from renal neoplasms. Appl Immunohistochem Mol Morphol. 2012;20(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  320. Wright NJ, Lee SY. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat Struct Mol Biol. 2019 Jul;26(7):599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Walsh CA, Qin L, Tien JC, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci [Electronic Resource]. 2012;8(4):470–85.

    Article  CAS  Google Scholar 

  322. Donato DP, Johnson MT, Yang XJ, Zynger DL. Expression of carbonic anhydrase IX in genitourinary and adrenal tumours. Histopathology. 2011;59(6):1229–39.

    Article  PubMed  Google Scholar 

  323. Jiang Z, Fanger GR, Woda BA, Banner BF, Algate P, Dresser K, et al. Expression of alpha-methylacyl-CoA racemase (P504s) in various malignant neoplasms and normal tissues: a study of 761 cases. Hum Pathol. 2003;34(8):792–6.

    Article  CAS  PubMed  Google Scholar 

  324. Salmenkivi K, Arola J, Voutilainen R, Ilvesmäki V, Haglund C, Kahri AI, et al. Inhibin/activin betaB-subunit expression in pheochromocytomas favors benign diagnosis. J Clin Endocrinol Metab. 2001;86(5):2231–5.

    CAS  PubMed  Google Scholar 

  325. Arola J, Liu J, Heikkila P, Ilvesmäki V, Salmenkivi K, Voutilainen R, et al. Expression of inhibin alpha in adrenocortical tumours reflects the hormonal status of the neoplasm. J Endocrinol. 2000;165(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  326. Kahn HJ, Marks A, Thom H, Baumal R. Role of antibody to S100 protein in diagnostic pathology. Am J Clin Pathol. 1983;79(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  327. Zhang H, Bu H, Chen H, Wei B, Liu W, Guo J, et al. Comparison of immunohistochemical markers in the differential diagnosis of adrenocortical tumors: immunohistochemical analysis of adrenocortical tumors. Appl Immunohistochem Mol Morphol. 2008 Jan;16(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  328. Ozcan A, Shen SS, Hamilton C, Anjana K, Coffey D, Krishnan B, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol. 2011;24(6):751–64.

    Article  CAS  PubMed  Google Scholar 

  329. Lau SK, Romansky SG, Weiss LM. Sustentaculoma: report of a case of a distinctive neoplasm of the adrenal medulla. Am J Surg Pathol. 2006;30(2):268–73.

    Article  PubMed  Google Scholar 

  330. Bialas M, Okon K, Dyduch G, Ciesielska-Milian K, Buziak M, Hubalewska-Dydejczyk A, et al. Neuroendocrine markers and sustentacular cell count in benign and malignant pheochromocytomas - a comparative study. Pol J Pathol. 2013;64(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  331. Kliewer KE, Wen DR, Cancilla PA, Cochran AJ. Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol. 1989;20(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  332. Kontogeorgos G, Scheithauer BW, Kovacs K, Horvath E, Melmed S. Growth factors and cytokines in paragangliomas and pheochromocytomas, with special reference to sustentacular cells. Endocr Pathol. 2002;13(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  333. Ordonez NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol. 2013;20(5):352–60.

    Article  CAS  PubMed  Google Scholar 

  334. Nonaka D, Wang BY, Edmondson D, Beckett E, Sun CC. A study of gata3 and phox2b expression in tumors of the autonomic nervous system. Am J Surg Pathol. 2013;37(8):1236–41.

    Article  PubMed  Google Scholar 

  335. Jalali M, Krishnamurthy S. Comparison of immunomarkers for the identification of adrenocortical cells in cytology specimens. Diagn Cytopathol. 2005;33(2):78–82.

    Article  PubMed  Google Scholar 

  336. Masmiquel L, Castro-Forns M, de Torres I, Garcia A, Vidal MT, Simo R. Leu-M1 immunoreactivity and phaeochromocytoma. J Clin Pathol. 1997;50(2):168–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Sangoi AR, McKenney JK. A tissue microarray-based comparative analysis of novel and traditional immunohistochemical markers in the distinction between adrenal cortical lesions and pheochromocytoma. Am J Surg Pathol. 2010;34(3):423–32.

    Article  PubMed  Google Scholar 

  338. Lapinski JE, Chen L, Zhou M. Distinguishing clear cell renal cell carcinoma, retroperitoneal paraganglioma, and adrenal cortical lesions on limited biopsy material: utility of immunohistochemical markers. Appl Immunohistochem Mol Morphol. 2010;18(5):414–21.

    Article  CAS  PubMed  Google Scholar 

  339. Saeger W, Fassnacht M, Chita R, Prager G, Nies C, Lorenz K, et al. High diagnostic accuracy of adrenal core biopsy: results of the german and austrian adrenal network multicenter trial in 220 consecutive patients. Hum Pathol. 2003;34(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  340. Lugli A, Forster Y, Haas P, Nocito A, Bucher C, Bissig H, et al. Calretinin expression in human normal and neoplastic tissues: a tissue microarray analysis on 5233 tissue samples. Hum Pathol. 2003;34(10):994–1000.

    Article  CAS  PubMed  Google Scholar 

  341. Wilkerson M, Lin F, Shi J. SF-1 immunohistochemical expression in tumors. Mod Pathol. 2013;26(S2):230A.

    Google Scholar 

  342. Clayton EF, Ziober A, Yao Y, Bing Z. Malignant tumors with clear cell morphology: a comparative immunohistochemical study with renal cell carcinoma antibody, Pax8, steroidogenic factor 1, and brachyury. Ann Diagn Pathol. 2013;17(2):192–7.

    Article  PubMed  Google Scholar 

  343. Mete O, Asa SL, Giordano TJ, Papotti M, Sasano H, Volante M. Immunohistochemical biomarkers of adrenal cortical neoplasms. Endocr Pathol. 2018;29(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  344. Mearini L, Del Sordo R, Costantini E, Nunzi E, Porena M. Adrenal oncocytic neoplasm: a systematic review. Urol Int. 2013;91(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  345. Weissferdt A, Phan A, Suster S, Moran CA. Adrenocortical carcinoma: a comprehensive immunohistochemical study of 40 cases. Appl Immunohistochem Mol Morphol. 2014;22(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  346. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.

    Article  PubMed  Google Scholar 

  347. Tacha D, Zhou D, Cheng L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2011;19(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  348. Perrino CM, Ho A, Zynger DL. GATA3 immunohistochemistry differentiates malignant pheochromocytoma from adrenal cortical carcinoma. Mod Pathol. 2016;29(S2):153A.

    Google Scholar 

  349. Zhai QJ, Ozcan A, Hamilton C, Shen SS, Coffey D, Krishnan B, et al. PAX-2 expression in non-neoplastic, primary neoplastic, and metastatic neoplastic tissue: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2010;18(4):323–32.

    Article  CAS  PubMed  Google Scholar 

  350. Yang B, Ali SZ, Rosenthal DL. CD10 facilitates the diagnosis of metastatic renal cell carcinoma from primary adrenal cortical neoplasm in adrenal fine-needle aspiration. Diagn Cytopathol. 2002;27(3):149–52.

    Article  PubMed  Google Scholar 

  351. Wieczorek TJ, Pinkus JL, Glickman JN, Pinkus GS. Comparison of thyroid transcription factor-1 and hepatocyte antigen immunohistochemical analysis in the differential diagnosis of hepatocellular carcinoma, metastatic adenocarcinoma, renal cell carcinoma, and adrenal cortical carcinoma. Am J Clin Pathol. 2002;118(6):911–21.

    Article  PubMed  Google Scholar 

  352. Lugli A, Tornillo L, Mirlacher M, Bundi M, Sauter G, Terracciano LM. Hepatocyte paraffin 1 expression in human normal and neoplastic tissues: tissue microarray analysis on 3,940 tissue samples. Am J Clin Pathol. 2004;122(5):721–7.

    Article  CAS  PubMed  Google Scholar 

  353. McCluggage WG, Maxwell P, Patterson A, Sloan JM. Immunohistochemical staining of hepatocellular carcinoma with monoclonal antibody against inhibin. Histopathology. 1997;30(6):518–22.

    Article  CAS  PubMed  Google Scholar 

  354. Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol. 2002;33(12):1175–81.

    Article  PubMed  Google Scholar 

  355. Kakar S, Muir T, Murphy LM, Lloyd RV, Burgart LJ. Immunoreactivity of hep par 1 in hepatic and extrahepatic tumors and its correlation with albumin in situ hybridization in hepatocellular carcinoma. Am J Clin Pathol. 2003;119(3):361–6.

    Article  PubMed  Google Scholar 

  356. Fan Z, van de Rijn M, Montgomery K, Rouse RV. Hep par 1 antibody stain for the differential diagnosis of hepatocellular carcinoma: 676 tumors tested using tissue microarrays and conventional tissue sections. Mod Pathol. 2003;16(2):137–44.

    Article  PubMed  Google Scholar 

  357. Chu PG, Ishizawa S, Wu E, Weiss LM. Hepatocyte antigen as a marker of hepatocellular carcinoma: an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein. Am J Surg Pathol. 2002;26(8):978–88.

    Article  PubMed  Google Scholar 

  358. Tawfic S, Niehans GA, Manivel JC. The pattern of CD10 expression in selected pathologic entities of the prostate gland. Hum Pathol. 2003;34(5):450–6.

    Article  PubMed  Google Scholar 

  359. Segawa N, Mori I, Utsunomiya H, Nakamura M, Nakamura Y, Shan L, et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int. 2001;51(6):452–9.

    Article  CAS  PubMed  Google Scholar 

  360. Sangoi AR, Fujiwara M, West RB, Montgomery KD, Bonventre JV, Higgins JP, et al. Immunohistochemical distinction of primary adrenal cortical lesions from metastatic clear cell renal cell carcinoma: a study of 248 cases. Am J Surg Pathol. 2011;35(5):678–86.

    Article  PubMed  PubMed Central  Google Scholar 

  361. Li H, Hes O, MacLennan G, Iczkowski K. Immunohistochemical distinction of primary adrenal nodules, including oncocytic tumor, from metastases of renal cell carcinoma to the adrenal. Modern Pathol. 2015;28(S2):239A.

    Google Scholar 

  362. Li H, Hes O, MacLennan GT, Eastwood DC, Iczkowski KA. Immunohistochemical distinction of metastases of renal cell carcinoma to the adrenal from primary adrenal nodules, including oncocytic tumor. Virchows Arch. 2015;466(5):581–8.

    Article  CAS  PubMed  Google Scholar 

  363. Srodon M, Westra WH. Immunohistochemical staining for thyroid transcription factor-1: a helpful aid in discerning primary site of tumor origin in patients with brain metastases. Hum Pathol. 2002;33(6):642–5.

    Article  CAS  PubMed  Google Scholar 

  364. Mukhopadhyay S, Katzenstein AL. Comparison of monoclonal napsin A, polyclonal napsin A, and TTF-1 for determining lung origin in metastatic adenocarcinomas. Am J Clin Pathol. 2012;138(5):703–11.

    Article  PubMed  Google Scholar 

  365. Lionti S, Ieni A, Cannavo S, Barresi V. Immunohistochemical expression of glypican-3 in adrenocortical carcinoma: a potential cause of diagnostic pitfalls. Ann Diagn Pathol. 2018;35:92–3.

    Article  PubMed  Google Scholar 

  366. Miettinen M, McCue PA, SarlomoRikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  367. Baumhoer D, Tornillo L, Stadlmann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;129(6):899–906.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Geisinger Clinic

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Wilkerson, M.L., Lin, F. (2022). Thyroid, Parathyroid, and Adrenal Glands. In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation