Knowledge Tracing with Exercise-Enhanced Key-Value Memory Networks

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12815))

Abstract

Knowledge tracing is a critical component of an intelligent tutoring system. It can track students’ knowledge states and skill mastery in order to provide a more helpful learning environment for them (for example, personalized exercise recommendations). People have been trying to apply the deep learning framework in recent years to tackle the challenge of tracing knowledge. Although these deep learning models produce impressive outcomes, they do have significant drawbacks. In existing prediction models, each exercise is often represented by a basic sequence number code, and the semantic information contained in the exercise text description has not been fully mined. We introduce a new profound education method, Knowledge Tracing with Exercise-Enhanced Key-Value Memory Networks (EKVMN) in this study, that fully utilizes the text information of questions as well as the memory function of the existing deep knowledge tracing model to predict students’ performance. Experiments on real-world knowledge tracing datasets reveal that our proposed model outperforms the baselines in terms of prediction performance. It also demonstrates the significance of context semantic information in the knowledge tracing task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.

  2. 2.

    https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect.

  3. 3.

    https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

References

  1. Liang, G., Weining, K., Junzhou, L.: Courseware recommendation in e-learning system. In: Liu, W., Li, Q., W.H. Lau, R. (eds.) ICWL 2006. LNCS, vol. 4181, pp. 10–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11925293_2

    Chapter  Google Scholar 

  2. Daomin, X., Mingchui, D.: Appropriate learning resource recommendation in intelligent web-based educational system. In: 2013 Fourth International Conference on Intelligent Systems Design and Engineering Applications, pp. 169–173. IEEE (2013)

    Google Scholar 

  3. Teng, S.Y., Li, J., Ting, L.P.Y., Chuang, K.T., Liu, H.: Interactive unknowns recommendation in e-learning systems. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 497–506. IEEE (2018)

    Google Scholar 

  4. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adapted Interact. 4(4), 253–278 (1994)

    Article  Google Scholar 

  5. Lord, F.M.: Applications of Item Response Theory to Practical Testing Problems. Routledge, New York (2012)

    Google Scholar 

  6. Pavlik Jr, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alternative to knowledge tracing. Online Submission (2009)

    Google Scholar 

  7. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)

    Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 765–774. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  11. Chen, P., Lu, Y., Zheng, V.W., Pian, Y.: Prerequisite-driven deep knowledge tracing. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 39–48. IEEE (2018)

    Google Scholar 

  12. Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F., Ohkuma, T.: Augmenting knowledge tracing by considering forgetting behavior. In: The World Wide Web Conference, pp. 3101–3107. ACM (2019)

    Google Scholar 

  13. Dibello, L.V., Roussos, L.A., Stout, W.: 31A review of cognitively diagnostic assessment and a summary of psychometric models. Handbook Stat. 26(06), 979–1030 (2006)

    Article  Google Scholar 

  14. Su, Y., et al.: Exercise-enhanced sequential modeling for student performance prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  15. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013) (2013)

    Google Scholar 

  16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. ar**v preprint ar**v:1706.03762 (2017)

  18. Shen, T., Zhou, T., Long, G., Jiang, J., Zhang, C.: Bi-directional block self-attention for fast and memory-efficient sequence modeling. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  19. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-attention network for RNN/CNN-free language understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  20. Hu, M., Peng, Y., Huang, Z., Qiu, X., Wei, F., Zhou, M.: Reinforced mnemonic reader for machine comprehension. CoRR, abs/1705.02798 (2017)

    Google Scholar 

  21. Lin, Z., Feng, M., Santos, C.N.d., Yu, M., **ang, B., Zhou, B., Bengio, Y.: A structured self-attentive sentence embedding. ar**v preprint ar**v:1703.03130 (2017)

  22. Bottou, L.: Stochastic Gradient Descent Tricks. Springer, Heidelberg (2012)

    Book  Google Scholar 

  23. Feng, M., Heffernan, N., Koedinger, K.: Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-Adapted Interact. 19(3), 243–266 (2009)

    Article  Google Scholar 

  24. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  25. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgement

This research was supported by NSFC (Grants No. 61877051). Li Li is the corresponding author for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N., Li, L. (2021). Knowledge Tracing with Exercise-Enhanced Key-Value Memory Networks. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12815. Springer, Cham. https://doi.org/10.1007/978-3-030-82136-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82136-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82135-7

  • Online ISBN: 978-3-030-82136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation