Remote Sensing Applications in Satellite Oceanography

  • Chapter
  • First Online:
Measurement for the Sea

Abstract

Satellite remote sensing provides repeated global observations of key ocean surface variables. These observations are complementary to in situ measurements. In fact, remotely sensed information fills some in situ gaps in temporal and spatial coverage, while in situ measurements, being a point-wise source of information, provide critical ground-truth for satellite retrievals calibration and validation. Advances in satellite ocean technology and algorithm research make satellite remote sensing an indispensable tool for environmental monitoring of the open and coastal ocean. Moreover, remotely sensed products support the interpretation and the prediction of oceanic phenomena that occur at regional and mesoscales in a synoptic way. In this chapter, we introduce basics of satellite oceanography, including the most used satellite orbits, the range of frequencies involved, and the processing levels related to the remote sensed products. Then, selected ocean products and their applications, from ocean color to infrared observations of sea surface temperature, passive microwaves, and altimetry, are addressed. Finally, a special attention is devoted to synthetic aperture radars (SARs) and the emerging role of microsatellites in observing ocean variables and, in particular, wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin S (2014) An introduction to ocean remote sensing, 2nd edn. Cambridge University Press, Cambridge. 

    Google Scholar 

  2. Sammartino M, Marullo S, Santoleri R, Scardi M (2018) Modelling the vertical distribution of phytoplankton biomass in the Mediterranean Sea from satellite data: a neural network approach. Remote Sens (Basel) 10:1666

    Article  ADS  Google Scholar 

  3. Nardelli B et al (2020) A deep learning network to retrieve ocean hydrographic profiles from combined satellite and in situ measurements – personal communication. J Geophys Res 12:3151

    Google Scholar 

  4. Le Traon PY, Reppucci A, Fanjul EA, Aouf L, Behrens A, Belmonte M et al (2019) From observation to information and users: the Copernicus marine service perspective. Front Mar Sci 6:234

    Article  Google Scholar 

  5. Robinson IS (2010) Discovering the ocean from space: the unique applications of satellite oceanography. Springer, Berlin, p 685

    Book  Google Scholar 

  6. Robinson IS (2004) Measuring the ocean from space: the principles and methods of satellite oceanography. Springer, Berlin, p 669

    Google Scholar 

  7. Parkinson C, Ward A, King M (2006) Earth science reference handbook: a guide to NASA's earth science program and earth observing satellite missions. National Aeronautics and Space Administration, Washington, p 277

    Google Scholar 

  8. Groom et al (2019) Satellite Ocean colour: current status and future perspective. Front Mar Sci 6:485

    Article  Google Scholar 

  9. Dierssen HM, Radolph K, Lewis E (2013) Remote sensing of ocean colour. In: Orcutt J (ed) Earth system monitoring: selected entries from the encyclopedia 439 of sustainability science and technology. Springer, New York

    Google Scholar 

  10. Donlon C, Berruti B, Buongiorno A, Ferreira MH, Femenias P, Frerick J et al (2012) The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sens Environ 120:37–57

    Article  ADS  Google Scholar 

  11. Ruddick K, Neukermans G, Vanhellemont Q, Jolivet D (2014) Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: a review of recent results. Remote Sens Environ 146:63–76

    Article  ADS  Google Scholar 

  12. Cotroneo Y, Aulicino G, Ruiz S, Pascual A, Budillon G, Fusco G, Tintoré J (2016) Glider and satellite high resolution monitoring of a mesoscale eddy in the algerian basin: effects on the mixed layer depth and biochemistry. J Mar Syst 162:73–88

    Article  Google Scholar 

  13. Rivaro P, Ianni C, Langone L, Ori C, Aulicino G, Cotroneo Y, Saggiomo M, Mangoni O (2017) Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014. J Mar Syst 166:144–158

    Article  Google Scholar 

  14. de Ruggiero P, Napolitano E, Iacono R, Pierini S (2016) A high-resolution modelling study of the circulation along the Campania coastal system, with a special focus on the Gulf of Naples. Cont Shelf Res 122:85–101

    Article  ADS  Google Scholar 

  15. Minnett PJ et al (2019) Half a century of satellite remote sensing of sea-surface temperature. Remote Sens Environ 2019:233

    Google Scholar 

  16. Donlon CJ et al (2007) The global ocean data assimilation experiment high-Resolution Sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213

    Article  ADS  Google Scholar 

  17. Kilpatrick KA, Podestá G, Walsh S, Williams E, Halliwell V, Szczodrak M, Brown OB, Minnett PJ, Evans R (2015) A decade of sea surface temperature from MODIS. Remote Sens Environ 165:27–41

    Article  ADS  Google Scholar 

  18. Walton CC, Pichel WG, Sapper JF, May DA (1998) The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103(27):999–928,012

    Google Scholar 

  19. Berry D, Corlett G, Embury O, Merchant C (2018) Stability assessment of the (a)ATSR Sea surface temperature climate dataset from the European Space Agency climate change initiative. Remote Sens (Basel) 10:126

    Article  ADS  Google Scholar 

  20. Llewellyn-Jones DT, Minnett PJ, Saunders RW, Zavody AM (1984) Satellite multichannel infrared measurements of sea surface temperature of the N.E. Atlantic Ocean using AVHRR/2. Q.J.R. Meteorol Soc 110:613–631

    Article  ADS  Google Scholar 

  21. Hall DK, Key JR, Casey KA, Riggs GA, Cavalieri DJ (2004) Sea-ice surface temperature product from MODIS. IEEE Trans Geosci Remote Sens 42:1076–1087

    Article  ADS  Google Scholar 

  22. Preußer A, Willmes S, Heinemann G, Paul S (2015) Thin ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery. Cryosphere 9:1063–1073

    Article  ADS  Google Scholar 

  23. Aulicino G, Sansiviero M, Paul S, Cesarano C, Fusco G, Wadhams P, Budillon G (2018a) A new approach for monitoring the Terra Nova Bay polynya through MODIS ice surface temperature imagery and its validation during 2010 and 2011 winter seasons. Remote Sens (Basel) 10:366

    Article  ADS  Google Scholar 

  24. Sansiviero M, Morales Maqueda MÁ, Fusco G, Aulicino G, Flocco D, Budillon G (2017) Modelling Sea ice formation in the Terra Nova Bay polynya. J Mar Syst 166:4–25

    Article  Google Scholar 

  25. Parmiggiani F (2006) Fluctuations of Terra Nova Bay polynya as observed by active (ASAR) and passive (AMSR-E) microwave radiometers. Int J Remote Sens 27:2459–2467

    Article  Google Scholar 

  26. Aulicino G, Wadhams P, Parmiggiani F (2019a) SAR pancake ice thickness retrieval in the terra nova bay (Antarctica) during the PIPERS expedition in winter 2017. Remote Sens (Basel) 11:2510

    Article  ADS  Google Scholar 

  27. Stewart RH (1985) Methods of satellite oceanography. University of California Press, Berkeley

    Google Scholar 

  28. Brodzik MJ, Long DG, Hardman MA, Paget A, Armstrong R (2018) MEaSUREs calibrated enhanced-resolution passive microwave daily EASE-grid 2.0 brightness temperature ESDR, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder

    Google Scholar 

  29. Wentz FJ (1997) A well calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res 102:8703–8718

    Article  ADS  Google Scholar 

  30. Ricciardulli L, Wentz FJ (2015) Ascatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011. J Atmos Oceanic Tech 32:1829–1846

    Article  Google Scholar 

  31. Fu LL, Lee T, Liu WT, Kwok R (2019) 50 years of satellite remote sensing of the ocean. Meteorol Monogr 59:1–46

    Article  Google Scholar 

  32. Mecklenburg S et al (2012) ESA’s soil moisture and ocean salinity Mission: Mission performance and operations. IEEE Trans Geosci Remote Sens 50:1354–1366

    Article  ADS  Google Scholar 

  33. Le Vine DM, Lagerloef GSE, Colomb FR et al (2007) Aquarius: an instrument to monitor sea surface salinity from space. IEEE Trans Geosci Remote Sens 45:2040–2050

    Article  ADS  Google Scholar 

  34. Entekhabi D et al (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98:704–716

    Article  Google Scholar 

  35. Soldo Y, Cabot F, Rougé B, Kerr YH, Al Bitar A, Epaillard E (2013) SMOS-NEXT: a new concept for soil moisture retrieval from passive interferometric observations. Eur Astron Soc Publ Ser 59:203–212

    Google Scholar 

  36. Alvera-Azcarate A, Barth A, Parard G, Beckers J-M (2016) Analysis of SMOS Sea surface salinity data using DINEOF. Remote Sens Environ 180:137–145

    Article  ADS  Google Scholar 

  37. Olmedo E, Martínez J, Turiel A, Ballabrera-Poy J, Portabella M (2017) Debiased non-Bayesian retrieval: a novel approach to SMOS Sea surface salinity. Remote Sens Environ 193:103–126

    Article  ADS  Google Scholar 

  38. Olmedo E, Taupier-Letage I, Turiel A, Alvera-Azcaràte A (2018) Improving SMOS Sea surface salinity in the Western Mediterranean Sea through multivariate and multifractal analysis. Remote Sens (Basel) 10:485

    Article  ADS  Google Scholar 

  39. Aulicino G, Cotroneo Y, Olmedo E, Cesarano C, Fusco G, Budillon G (2019b) In situ and Satellite Sea surface salinity in the Algerian Basin observed through ABACUS glider measurements and BEC SMOS regional products. Remote Sens (Basel) 11:1361

    Article  ADS  Google Scholar 

  40. Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao H-Y (2012) Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observation. Geophys Res Lett 39:L20603

    Article  ADS  Google Scholar 

  41. Kaleschke L, Tian-Kunze X, Maaß N, Mäkynen M, Drusch M (2012) Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophys Res Lett 39:L05501

    Article  ADS  Google Scholar 

  42. Mäkynen M et al (2020) Satellite observations for detecting and forecasting sea-ice conditions: a summary of advances made in the SPICES project by the EU’s horizon 2020 programme. Remote Sens (Basel) 12:1214

    Article  ADS  Google Scholar 

  43. Le Vine DM, Dinnat EP, Meissner T, Wentz FJ, Kao HY, Lagerloef G, Lee T (2018) Status of Aquarius and salinity continuity. Remote Sens (Basel) 10:1585

    Article  ADS  Google Scholar 

  44. Meissner T, Wentz FJ, Le Vine DM (2018) The salinity retrieval algorithms for the NASA Aquarius version 5 and SMAP version 3 releases. Remote Sens (Basel) 10:1121

    Article  ADS  Google Scholar 

  45. Dinnat EP, Le Vine DM, Boutin J, Meissner T, Lagerloef G (2019) Remote sensing of sea surface salinity: comparison of satellite and in situ observations and impact of retrieval parameters. Remote Sens (Basel) 11:750

    Article  ADS  Google Scholar 

  46. Cerrone D, Fusco G, Simmonds I, Aulicino G, Budillon G (2017) Dominant covarying climate signals in the southern ocean and antarctic sea ice influence during the last three decades. J Climate 30:3055–3072

    Article  ADS  Google Scholar 

  47. Wadhams P, Aulicino G, Parmiggiani F, Persson POG, Holt B (2018) Pancake ice thickness map** in the Beaufort Sea from wave dispersion observed in SAR imagery. J Geophys Res Oceans 123:2213–2237

    Article  ADS  Google Scholar 

  48. Tateyama K, Enomoto H, Toyota T, Uto S (2002) Sea ice thickness estimated from passive microwave radiometers. Polar Meteorol Glaciol 16:15–31

    Google Scholar 

  49. Martin S, Drucker R, Kwok R, Holt B (2004) Estimation of the thin ice thickness and heat fluxes for the Chukchi Sea Alaskan coast polynya from SSM/I data, 1990–2001. J Geophys Res 109:C10012-1–C10012-15

    ADS  Google Scholar 

  50. Naoki K, Ukita J, Nishio F, Nakayama M, Comiso JC, Gasiewski AJ (2008) Thin sea ice thickness as inferred from passive microwave and in situ observations. J Geophys Res 113:C02S16-1–C02S16-11

    Google Scholar 

  51. Aulicino G, Fusco G, Kern S, Budillon G (2014) Estimation of sea-ice thickness in Ross and Weddell seas from SSM/I brightness temperatures. IEEE Trans Geosci Remote Sens 52:4122–4140

    Article  ADS  Google Scholar 

  52. Richards JA (2009) Remote sensing with imaging radar. Signals and communication technology series. Springer, Berlin

    Book  Google Scholar 

  53. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, Boca Raton

    Book  Google Scholar 

  54. Filippazzo G, Dinand S (2017) The potential impact of small satellite radar constellations on traditional space systems. In: 5th federated and fractionated satellite systems workshop, Toulouse

    Google Scholar 

  55. Kramer HJ, Cracknell AP (2008) An overview of small satellites in remote sensing. Int J Remote Sens 29(15):4285–4337

    Article  Google Scholar 

  56. Peral E et al (2018) Radar technologies for Earth remote sensing from CubeSat platforms. Proc IEEE 106(3):404–418

    Article  Google Scholar 

  57. Paek SW, Balasubramanian S, Kim S, de Weck O (2020) Small-satellite synthetic aperture radar for continuous global Biospheric monitoring: a review. Remote Sens (Basel) 12:2546

    Article  ADS  Google Scholar 

  58. Deepak RA, Twiggs RJ (2012) Thinking out of the box: space science beyond the CubeSat. J Small Satell 1:3–7

    ADS  Google Scholar 

  59. Apel JR (1987) Principles of ocean physics, vol 38. Academic, New York

    Google Scholar 

  60. Wackerman CC et al (1996) Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans Geosci Remote Sens 34(6):1343–1352

    Article  ADS  Google Scholar 

  61. Grieco G, Nirchio F, Migliaccio M (2015) Application of state-of-the- art SAR X-band geophysical model functions (GMFs) for sea surface wind (SSW) speed retrieval to a data set of the Italian satellite mission COSMO-SkyMed. Int J Remote Sens 36(9):2296–2312

    Article  Google Scholar 

  62. Kerbaol V, Chapron B, Vachon PW (1998) Analysis of ERS-1/2 synthetic aperture radar wave mode images. J Geophys Res Ocean 103(C4):7833–7846

    Article  ADS  Google Scholar 

  63. Grieco G, Lin W, Migliaccio M, Nirchio F, Portabella M (2016) Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int J Remote Sens 37(21):5086–5104

    Article  Google Scholar 

  64. Corcione V, Grieco G, Portabella M, Nunziata F, Migliaccio M (2019) A novel azimuth cutoff implementation to Retrieve Sea surface wind speed from SAR imagery. IEEE Trans Geosci Remote Sens 57(6):3331–3340

    Article  ADS  Google Scholar 

  65. Abdallah S et al (2021) Altimetry for the future: building on 25 years of progress. Advances on space research 68(2):319–363.

    Google Scholar 

  66. Aulicino G, Cotroneo Y, Ruiz S, Román AS, Pascual A, Fusco G, Tintoré J, Budillon G (2018b) Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track. J Mar Syst 179:55–71

    Article  Google Scholar 

  67. Taburet G, Sanchez-Roman A, Ballarotta M, Pujol M-I, Legeais J-F, Fournier F et al (2019) Duacs dt-2018: 25 years of reprocessed sea level altimeter products. Ocean Sci Discuss 2019:1–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Aulicino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aulicino, G. et al. (2022). Remote Sensing Applications in Satellite Oceanography. In: Daponte, P., Rossi, G.B., Piscopo, V. (eds) Measurement for the Sea. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-82024-4_8

Download citation

Publish with us

Policies and ethics

Navigation