Estimation of Hurst Index and Traffic Simulation

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education IV (ICCSEEA 2021)

Abstract

The investigation of traffic properties of modern networks requires new approaches, the use of adequate types of distributions of traffic components, and measurement errors should be also taken into account. The models of the request flow are approximated by different distributions with “light tails” (Gaussian, Poisson distributions) as well as “heavy tails” (Pareto, Weibull, log-normal distributions). Self-similar traffic models are widely used to describe traffic in packet-switched networks. The degree of self-similarity of traffic can be determined by various methods, one of them is the estimation of the Hurst index. In the paper, new approaches in simulation of self-similar traffic and theoretical estimation of Hurst index with measurement errors are studied, the statistical simulation of main needed distributions with heavy tails is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Messier, G.G., Finvers, I.G.: Traffic models for medical wireless sensor networks. IEEE Commun. Lett. 11(1), 13–15 (2007). https://doi.org/10.1109/LCOMM.2007.061291. https://ieeexplore.ieee.org/document/4114210

  2. Wang, Q., Zhang, T.: Source traffic modeling in wireless sensor networks for target tracking. In: Proceedings of the 5th ACM International Symposium on Performance Evaluation of Wireless Ad-Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2008), pp. 96–100 (2008)

    Google Scholar 

  3. Vybornova, A., Koucheryavy, A.: Traffic analysis in target tracking ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 389–398. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_34

    Chapter  Google Scholar 

  4. Levakov, A.K., Sokolov, A.N., Sokolov, N.A.: Models of incoming traffic in packet networks. T-Comm 9(5), 91–94 (2015)

    Google Scholar 

  5. Hosseini, S.A., Akbarzadeh-T, M.-R., Naghibi-Sistani, M.-B.: Qualitative and quantitative evaluation of EEG signals in epileptic seizure recognition. Int. J. Intell. Syst. Appl. (IJISA) 5(6), 41–46 (2013). https://doi.org/10.5815/ijisa.2013.06.05

    Article  Google Scholar 

  6. Goshvarpour, A., Goshvarpour, A.: Nonlinear analysis of human gait signals. Int. J. Inf. Eng. Electron. Bus. 4(2), 15–21 (2012). https://doi.org/10.5815/ijieeb.2012.02.03

    Article  Google Scholar 

  7. Goshvarpour, A., Goshvarpour, A.: Chaotic behavior of heart rate signals during Chi and Kundalini meditation. Int. J. Image Graph. Signal Process. 4(2), 23–29 (2012). https://doi.org/10.5815/ijigsp.2012.02.04

    Article  Google Scholar 

  8. Norros, I.: A storage model with self-similar input. Queueing Syst. 16(3–4), 387–396 (1994). https://doi.org/10.1007/BF01158964

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In: Proceedings of the Second ACM SIGCOMM Workshop, Marseille, France, pp. 49–61 (2002)

    Google Scholar 

  10. Sheluhin, O.I., Smolskiy, S.M., Osin, A.V.: Similar processes in telecommunication. Wiley, Hoboken (2007)

    Book  Google Scholar 

  11. Ageev, D.V.: Parametric synthesis of multiservice telecommunication systems in the transmission of group traffic with the effect of self-similarity. Electron. Sci. Specialized Ed.: Prob. Telecommun. 1(10), 46–65 (2013)

    Google Scholar 

  12. Pashko, A.: Simulation of telecommunication traffic using statistical models of fractional Brownian motion. In: 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology. Conference Proceedings, 10–13 October 2017, pp. 414–418 (2017)

    Google Scholar 

  13. Pashko, A., Tretynyk, V.: Methods of the statistical simulation of the self-similar traffic. In: Zhengbing, H., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 54–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91008-6_6

    Chapter  Google Scholar 

  14. Shi, F., Li, C., Zhu, Y.: Robustness evaluation for military communication effectiveness based on multiple data sources and Monte Carlo simulation. Int. J. Mod. Educ. Comput. Sci. 3(5), 1–9 (2011). https://doi.org/10.5815/ijmecs.2011.05.01

    Article  Google Scholar 

  15. Mehrdoust, F., Fathi, K., Saber, N.: Accelerated simulation scheme for solving financial problems. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 6(4), 43–48 (2014). https://doi.org/10.5815/ijitcs.2014.04.05

    Article  Google Scholar 

  16. Burkhardt, J.: Bayesian parameter inference of explosive yields using Markov chain Monte Carlo techniques. Int. J. Math. Sci. Comput. (IJMSC) 6(2), 1–17 (2020). https://doi.org/10.5815/ijmsc.2020.02.01

    Article  Google Scholar 

  17. Kozachenko, Y., Pashko, A.A.: Accuracy of simulation of the Gaussian random processes with continuous spectrum. Comput. Model. New Technol. 18(3), 7–12 (2014)

    Google Scholar 

  18. Kurchenko, O.O.: One strong consistency estimate of the Hurst parameter of the fractional Brownian motion. Theory Probab. Meth. Stat. 67, 97–106 (2003)

    MathSciNet  Google Scholar 

  19. Czachórski, T., Domańska, J., Pagano, M.: On stochastic models of Internet traffic. In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 289–303. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25861-4_25

    Chapter  Google Scholar 

  20. Kozachenko, Yu., Pogorilyak, O., Rozora, I., Tegza, A.: Simulation of Stochastic Processes with Given Accuracy and Reliability. ISTE Press & Elsevier. London (2016)

    Google Scholar 

  21. Pashko, A.O., Rozora, I.V.: Accuracy of simulation for the network traffic in the form of fractional Brownian motion. In: 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Slavske, pp. 840–845 (2018). https://doi.org/10.1109/TCSET.2018.8336328

  22. Pashko, A., Oleshko, T., Syniavska, O.: Estimation of hurst parameter for self-similar traffic. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2020. AISC, vol. 1247, pp. 181–191. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55506-1_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Rozora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pashko, A., Rozora, I., Syniavska, O. (2021). Estimation of Hurst Index and Traffic Simulation. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-80472-5_4

Download citation

Publish with us

Policies and ethics

Navigation