Abstract

Disease-2019 (COVID-19) has been reported to be caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has endangered the health situation of many people globally. Moreover, almost 10 million cases have been reported worldwide, while 5 million mortality related to COVID-19 has been reported. Early and rapid laboratory identification of COVID-19 have been recognized as foremost focus of control and treatment. It has been discovered that point-of-care assessment entails diverse merits which include low cost, rapid, non-specific device requirements, accurate, portable which enable them to play numerous crucial role in the detection and diagnosis of diseases. Therefore, this chapter intends to provide a detailed information on numerous comprehensive techniques that are applied for the diagnosis of COVID-19. Molecular techniques applied in the detection and analysis of SARS CoV-2 were also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afzal, A. (2020). Molecular diagnostic technologies for COVID-19: Limitations and challenges. Journal of Advanced Research, 26, 149–115.

    Article  MathSciNet  Google Scholar 

  2. Abimbola, A. (2020). Mental health implications of lockdown during coronavirus pandemic among adult resident in Ibadan, Nigeria. AJSW, 10(3), 50–58. Special Issue on COVID-19.

    Google Scholar 

  3. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & **a, L. (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 296(2), E32–E40. https://doi.org/10.1148/radiol.2020200642. Epub 2020 Feb 26. PMID: 32101510; PMCID: PMC7233399.

    Article  Google Scholar 

  4. Alpdagtas, S., Ilhan, E., Uysal, E., Sengor, M., Ustundag, C. B., & Gunduz, O. (2020). Evaluation of current diagnostic methods for COVID-19. APL bioengineering, 4(4), 041506. https://doi.org/10.1063/5.0021554.

    Article  Google Scholar 

  5. Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet, 395(10228), 931–934.

    Article  Google Scholar 

  6. Bo, H. X., Li, W., Yang, Y., Wang, Y., Zhang, Q., Cheung, T., Wu, X., & **ang, Y. T. (2020). Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychological Medicine, 1–2. https://doi.org/10.1017/S0033291720000999. Epub ahead of print. PMID: 32216863; PMCID: PMC7200846.

  7. Brian, D. A., & Baric, R. S. (2005). Coronavirus genome structure and replication. Current Topics in Microbiology and Immunology, 287, 1–30.

    Google Scholar 

  8. Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., Miao, X., Streithorst, J. A., Granados, A., Sotomayor-Gonzalez, A., Zorn, K., Gopez, A., Hsu, E., Gu, W., Miller, S., Pan, C. Y., Guevara, H., Wadford, D. A., Chen, J. S., & Chiu, C. Y. (2020). CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 38(7), 870–874. https://doi.org/10.1038/s41587-020-0513-4. Epub 2020 Apr 16. .PMID: 32300245.

    Article  Google Scholar 

  9. Chakraborty, H., & Bhattacharjya, S. (2020). Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Biophysical Chemistry, 265, 106438.

    Article  Google Scholar 

  10. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. https://doi.org/10.1126/science.aar6245. Epub 2018 Feb 15. Erratum in: Science. 2021 Feb 19;371(6531): PMID: 29449511; PMCID: PMC6628903.

    Article  Google Scholar 

  11. Chen, Z., Wu, Q., Chen, J., Ni, X., & Dai, J. (2020). A DNA aptamer based method for detection of SARS-CoV-2 Nucleocapsid protein. Virologica Sinica, 35(3), 351–354. https://doi.org/10.1007/s12250-020-00236-z. Epub 2020 May 25. PMID: 32451881; PMCID: PMC7246297.

    Article  Google Scholar 

  12. Ding, X., Yin, K., Li, Z., & Liu, C. (2020). All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. Biochemistry. https://doi.org/10.1101/2020.03.19.998724.

  13. El-Tholoth, M., Bau, H. H., & Song, J. (2020). A single and two-stage, closed-tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry. ChemRxiv : the preprint server for chemistry. https://doi.org/10.26434/chemrxiv.11860137.

  14. Escudero-Abarca, B. I., Suh, S. H., Moore, M. D., Dwivedi, H. P., & Jaykus, L.-A. (2014). Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One, 9, e106805.

    Article  Google Scholar 

  15. Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Development Research., 81(5), 537–540.

    Article  Google Scholar 

  16. Hou, T., Zeng, W., Yang, M., Chen, W., Ren, L., Ai, J., Wu, J., Liao, Y., Gou, X., Li, Y., Wang, X., Su, H., Gu, B., Wang, J., & Xu, T. (2020). Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathogens, 16(8), e1008705. https://doi.org/10.1371/journal.ppat.1008705.

    Article  Google Scholar 

  17. Jeremy, H., Huang, A., Li, Z., Tufekci, Z., Zdimal, V., van der Westhuizen, H.-M., von Delft, A., Price, A., Fridman, L., Tang, L.-H., Tang, V., Watson, G. L., Bax, C. E., Shaikh, R., Questier, F., Hernandez, D., Chu, L. F., Ramirez, C. M., & Rimoin, A. W. (2021). Proceedings of the National Academy of Sciences, 118(4), e2014564118. https://doi.org/10.1073/pnas.2014564118.

    Article  Google Scholar 

  18. Hu, X., Deng, Q., Li, J., Chen, J., Wang, Z., Zhang, X., Fang, Z., Li, H., Zhao, Y., Yu, P., Li, W., Wang, X., Li, S., Zhang, L., & Hou, T. (2020). Development and clinical application of a rapid and sensitive loop-mediated isothermal amplification test for SARS-CoV-2 infection. Edited by Christina F Spiropoulou. MSphere, 5(4), e00808–e00820. https://doi.org/10.1128/mSphere.00808-20.

    Article  Google Scholar 

  19. Jeon, Y., Choi, Y. H., Jang, Y., Yu, J., Goo, J., Lee, G., Jeong, Y. K., Lee, S. H., Kim, I. S., Kim, J. S., Jeong, C., Lee, S., & Bae, S. (2018). Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nature Communications, 9(1), 2777. https://doi.org/10.1038/s41467-018-05245-x. PMID: 30018371; PMCID: PMC6050341.

    Article  Google Scholar 

  20. Karthik, K., Aravindh Babu, R. P., Dhama, K., Chitra, M. A., Kalaiselvi, G., Alagesan Senthilkumar, T. M., & Raj, G. D. (2020). Biosafety concerns during the collection, transportation, and processing of COVID-19 samples for diagnosis. Archives of Medical Research, 51(7), 623–630. https://doi.org/10.1016/j.arcmed.2020.08.007.

    Article  Google Scholar 

  21. Kashir, J., & Yaqinuddin, A. (2020). Loop Mediated Isothermal Amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/j.mehy.2020.109786.

    Article  Google Scholar 

  22. Liu, R., Han, H., Liu, F., Lv, Z., Wu, K., Liu, Y., Feng, Y., & Zhu, C. (2020a). Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta, J505, 172–175.

    Article  Google Scholar 

  23. Liu, S., Yang, L., Zhang, C., **ang, Y. T., Liu, Z., Hu, S., & Zhang, B. (2020b). Online mental health services in China during the COVID-19 outbreak. Lancet Psychiatry, 7(4), e17–e18. https://doi.org/10.1016/S2215-0366(20)30077-8. Epub 2020 Feb 19. PMID: 32085841; PMCID: PMC7129099.

    Article  Google Scholar 

  24. Liu, Y. C., Kuo, R. L., & Shih, S. R. (2020c). COVID-19: The first documented coronavirus pandemic in history. Biomedical Journal, 43(4), 328–333.

    Article  Google Scholar 

  25. Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., Liao, P., Qiu, J. F., Lin, Y., Cai, X. F., Wang, D. Q., Hu, Y., Ren, J. H., Tang, N., Xu, Y. Y., Yu, L. H., Mo, Z., Gong, F., Zhang, X. L., Tian, W. G., & Huang, A. L. (2020). Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine, 26(6), 845–848.

    Article  Google Scholar 

  26. Lu, J., Yin, Q., Li, Q., Fu, G., Hu, X., Huang, J., Chen, L., Li, Q., & Guo, Z. (2020). Clinical characteristics and factors affecting the duration of positive nucleic acid test for patients of COVID-19 in **nYu, China. Journal of Clinical Laboratory Analysis, 34(10), e23534.

    Google Scholar 

  27. Malik, Y. S., Verma, A. K., Kumar, N., Touil, N., Karthik, K., Tiwari, R., Bora, D. P., Dhama, K., Ghosh, S., Hemida, M. G., Abdel-Moneim, A. S., Bányai, K., Vlasova, A. N., Kobayashi, N., & Singh, R. K. (2019). Advances in diagnostic approaches for viral etiologies of diarrhea: From the lab to the field. Frontiers in Microbiology, 10, 1957. https://doi.org/10.3389/fmicb.2019.01957.

    Article  Google Scholar 

  28. Massart, S., Chiumenti, M., De Jonghe, K., Glover, R., Haegeman, A., Koloniuk, I., Komínek, P., Kreuze, J., Kutnjak, D., Lotos, L., Maclot, F., Maliogka, V., Maree, H. J., Olivier, T., Olmos, A., Pooggin, M. M., Reynard, J. S., Ruiz-García, A. B., Safarova, D., Schneeberger, P. H. H., Sela, N., Turco, S., Vainio, E. J., Varallyay, E., Verdin, E., Westenberg, M., Brostaux, Y., & Candresse, T. (2019). Virus detection by high-throughput sequencing of small RNAs: Large-scale performance testing of sequence analysis strategies. Phytopathology, 109(3), 488–497. https://doi.org/10.1094/PHYTO-02-18-0067-R. Epub PMID: 30070618.

    Article  Google Scholar 

  29. Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289(1), 150–154.

    Article  Google Scholar 

  30. Morozova, O., & Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92(5), 255–264.

    Article  Google Scholar 

  31. Morris, K. V., & Mattick, J. S. (2014). The rise of regulatory RNA. Nature Reviews. Genetics, 15(6), 423–437.

    Article  Google Scholar 

  32. Myhrvold, C., Freije, C. A., Gootenberg, J. S., Abudayyeh, O. O., Metsky, H. C., Durbin, A. F., Kellner, M. J., Tan, A. L., Paul, L. M., Parham, L. A., Garcia, K. F., Barnes, K. G., Chak, B., Mondini, A., Nogueira, M. L., Isern, S., Michael, S. F., Lorenzana, I., Yozwiak, N. L., MacInnis, B. L., Bosch, I., Gehrke, L., Zhang, F., & Sabeti, P. C. (2018). Field-deployable viral diagnostics using CRISPR-Cas13. Science, 360(6387), 444–448. https://doi.org/10.1126/science.aas8836. PMID: 29700266; PMCID: PMC6197056.

    Article  Google Scholar 

  33. Nagasawa, M., Yamaguchi, Y., Furuya, M., Takahashi, Y., Taki, R., Nagata, K., Suzaki, S., Kurosaki, M., & Izumi, N. (2020). Investigation of anti-SARS-CoV-2 IgG and IgM antibodies in the patients with COVID-19 by three different ELISA test kits. SN Comprehensive Clinical Medicine, 1–5. Advance online publication.

    Google Scholar 

  34. Njiru, Z. K. (2012). Loop-mediated isothermal amplification technology: Towards point of care diagnostics. edited by Philippe Büscher. PloS Neglected Tropical Disease, 6(6), e1572.

    Article  Google Scholar 

  35. Olaniyan Olugbemi, T., Ayobami, D., Okotie, G. E., Adetunji, C. O., Oluwaseun, I. B., Bamidele, O. J., & Olugbenga, E. O. (2020). Testis and blood-testis barrier in Covid-19 infestation: Role of angiotensin converting enzyme 2 in male infertility. Journal of Basic and Clinical Physiology and Pharmacology. DEGRUYTER, 31(6), 1–13. https://doi.org/10.1515/jbcpp-2020-0156.

    Article  Google Scholar 

  36. Tope, O. O., Adetunji, C. O., Okotie, G. E., Adeyomoye, O., Anani, O. A., & Mali, P. C. (2021). Impact of COVID-19 on assisted reproductive technologies and its multifacet influence on global bioeconomy. Journal of Reproductive Healthcare and Medicine, 2(Suppl_1), 92–104. https://doi.org/10.25259/JRHM_44_2020.

    Article  Google Scholar 

  37. O'Sullivan, C. K. (2002). Aptasensors--the future of biosensing? Analytical and Bioanalytical Chemistry, 372(1), 44–48. https://doi.org/10.1007/s00216-001-1189-3. Epub 2001 Dec 13. .PMID: 11939212.

    Article  Google Scholar 

  38. Page, J., Hinshaw, D., & McKay, B. (2021). In hunt for Covid-19 origin, patient zero points to second Wuhan Market – The man with the first confirmed infection of the new coronavirus told the WHO team that his parents had shopped there. The Wall Street Journal. Retrieved 27 Feb 2021.

    Google Scholar 

  39. Park, J. W., ** Lee, S., Choi, E. J., Kim, J., Song, J. Y., & Bock Gu, M. (2014). An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosensors & Bioelectronics, 51, 324–329.

    Article  Google Scholar 

  40. Poon, L. L., Leung, C. S., Tashiro, M., Chan, K. H., Wong, B. W., Yuen, K. Y., Guan, Y., & Peiris, J. S. (2004). Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clinical Chemistry, 50(6), 1050–1052. https://doi.org/10.1373/clinchem.2004.032011. Epub 2004 Mar 30. PMID: 15054079; PMCID: PMC7108160.

    Article  Google Scholar 

  41. Praharaj, Ira, Amita Jain, Mini Singh, Anukumar Balakrishnan, Rahul Dhodapkar, Biswajyoti Borkakoty, Munivenkatappa Ashok, Pradeep Das Das, Debasis Biswas, Usha Kalawat, Jyotirmayee Turuk, A. P. Sugunan, Shantanu Prakash, Anirudh K. Singh, Rajamani Barathidasan, Subhra Subhadra, Jyotsnamayee Sabat, M. J. Manjunath, Poonam Kanta, Nagaraja Mudhigeti, Rahul Hazarika, Hricha Mishra, Kumar Abhishek, C. Santhalembi, Manas Ranjan Dikhit, Neetu Vijay, Jitendra Narayan, Harmanmeet Kaur, Sidhartha Giri, Nivedita Gupta. (2020). Indian Journal of Medical Research. 0975–9174. https://doi.org/10.4103/0971-5916.318161

  42. Pyrc, K., Milewska, A., & Potempa, J. (2011). Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. Journal of Virological Methods, 175(1), 133–136.

    Article  Google Scholar 

  43. Quirch, M., Lee, J., & Rehman, S. (2020). Hazards of the cytokine storm and cytokine-targeted therapy in patients with COVID-19: Review. Journal of Medical Internet Research, 22(8), e20193.

    Article  Google Scholar 

  44. Rauch, J. N., Valois, E., Solley, S. C., Braig, F., Lach, R. S., Baxter, N. J., Kosik, K. S., Arias, C., Acosta-Alvear, D., & Wilson, M. Z. (2020). A scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material. Molecular Biology. https://doi.org/10.1101/2020.04.20.052159.

  45. Salehi, S., Abedi, A., Balakrishnan, S., & Gholamrezanezhad, A. (2020). Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. AJR. American Journal of Roentgenology, 215(1), 87–93.

    Article  Google Scholar 

  46. Semo, B., & Frissa, S. M. (2020). The mental health impact of the COVID-19 pandemic: Implications for sub-Saharan Africa. Psychology Research and Behavior Management, 13, 713–720.

    Article  Google Scholar 

  47. Song, J., Liu, C., Mauk, M. G., Rankin, S. C., Lok, J. B., Greenberg, R. M., & Bau, H. H. (2017). Two-stage isothermal enzymatic amplification for concurrent multiplex molecular detection. Clinical Chemistry, 63(3), 714–722. https://doi.org/10.1373/clinchem.2016.263665. Epub 2017 Jan 10. PMID: 28073898; PMCID: PMC5913740.

    Article  Google Scholar 

  48. Thai, H. C., Mai, Q. L., Cuong, D. V., Parida, M., Minekawa, H., Notomi, T., Hasebe, F., & Morita, K. (2004). Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology, 42(5), 1956–1961. https://doi.org/10.1128/jcm.42.5.1956-1961.2004.

    Article  Google Scholar 

  49. Tratner, I. (2003). SRAS: 1. Le virus [SARS-CoV: 1. The virus]. Medecine Sciences: M/S, 19(8-9), 885–891.

    Article  Google Scholar 

  50. Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2021). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology, 19(3), 171–183.

    Article  Google Scholar 

  51. Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine., 76, 14–20.

    Article  Google Scholar 

  52. Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews: MMBR, 69(4), 635–664.

    Article  Google Scholar 

  53. **ang, X., Qian, K., Zhang, Z., Lin, F., **e, Y., Liu, Y., & Yang, Z. (2020). CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. Journal of Drug Targeting, 28(7-8), 727–731.

    Article  Google Scholar 

  54. Zhang, F. (2020). A protocol for detection of COVID-19 using CRISPR diagnostics.

    Google Scholar 

  55. Zhang, F., Abudayyeh, O. O., & Gootenberg, J. S. (2020). A protocol for detection of COVID-19 using CRISPR diagnostics. https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf.

  56. Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., **a, J., Guo, Q., Song, T., He, J., Yen, H. L., Peiris, M., & Wu, J. (2020). SARS-CoV-2 viral load in upper respiratory specimens of infected patients. The New England Journal of Medicine, 382(12), 1177–1179. https://doi.org/10.1056/NEJMc2001737. Epub 2020 Feb 19. PMID: 32074444; PMCID: PMC7121626.

    Article  Google Scholar 

  57. Zou, X., Wu, J., Gu, J., Shen, L., & Mao, L. (2019). Application of aptamers in virus detection and antiviral therapy. Frontiers in Microbiology, 10, 1462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2022). Diverse Techniques Applied for Effective Diagnosis of COVID-19. In: Pani, S.K., Dash, S., dos Santos, W.P., Chan Bukhari, S.A., Flammini, F. (eds) Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-79753-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79753-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79752-2

  • Online ISBN: 978-3-030-79753-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation