Developmental Defects of the Teeth and Their Hard Tissues

  • Chapter
  • First Online:
Pediatric Dentistry

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

Abstract

This chapter is about dental developmental defects, regarding both the whole tooth as a unit and its hard dental tissues individually. Regarding the tooth anomalies like tooth number, size, and morphology, after shortly addressing dental development to introduce the reader into the biology and genetics of the disturbances, it presents possible causes, their clinical expression, and treatment modalities. Regarding the malformations in the structure of hard dental tissues, it first reminds of the formation and structure of enamel, dentin, and cementum, and then it addresses the defects in terms of clinical and histological appearance, etiology, diagnosis, and restorative treatment. This is done by following a classification into environmentally induced, mainly the very common molar incisor hypomineralization, and genetically transmitted defects, either expressed alone or within various syndromes. The last section discusses developmental color changes of the teeth and their correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nanci A. Chapter 5: Development of the tooth and its supporting tissues. In: Ten Cate’s oral histology. St Louis: Mosby; 2008. p. 79–107.

    Google Scholar 

  2. Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol. 2012;4(4):a008425. https://doi.org/10.1101/cshperspect.a008425.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol. 2015;115:157–86. https://doi.org/10.1016/bs.ctdb.2015.07.006.

    Article  PubMed  Google Scholar 

  4. Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, et al. Regulation of dental enamel shape and hardness. J Dent Res. 2010;89(10):1024–38. https://doi.org/10.1177/0022034510375829.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol. 2013;377(2):399–414. https://doi.org/10.1016/j.ydbio.2013.02.007.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chhabra N, Goswami M, Chhabra A. Genetic basis of dental agenesis–molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal. 2014;19(2):e112–9.

    Article  PubMed  Google Scholar 

  7. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nature Genet. 2000;24(1):18–9.

    Article  PubMed  Google Scholar 

  8. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043–50. https://doi.org/10.1086/386293.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Meyer-Marcotty P, Weisschuh N, Dressler P, Hartmann J, Stellzig-Eisenhauer A. Morphology of the sella turcica in Axenfeld–Rieger syndrome with PITX2 mutation. J Oral Pathol Med. 2008;37(8):504–10. https://doi.org/10.1111/j.1600-0714.2008.00650.x.

    Article  PubMed  Google Scholar 

  10. Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nürnberg G, Lew ED, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38(4):414–7. https://doi.org/10.1038/ng1757.

    Article  PubMed  Google Scholar 

  11. Anuthama K, Prasad H, Ramani P, Premkumar P, Natesan A, Sherlin HJ. Genetic alterations in syndromes with oral manifestations. Dent Res J (Isfahan). 2013;10(6):713–22.

    Google Scholar 

  12. Berk DR, Armstrong NL, Shinawi M, Whelan AJ. ADULT syndrome due to an R243W mutation in TP63. Int J Dermatol. 2012;51(6):693–6. https://doi.org/10.1111/j.1365-4632.2011.05375.x.

    Article  PubMed  Google Scholar 

  13. van Bokhoven H, Jung M, Smits AP, van Beersum S, Rüschendorf F, van Steensel M, et al. Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other hand/foot anomalies maps to human chromosome 3q27. Am J Hum Genet. 1999;64(2):538–46. https://doi.org/10.1086/302246.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Pauker PS, Stoler MJ. Clinical manifestations and diagnosis of Ehlers-Danlos syndromes. Up to date. Waltham: Wolters Kluwer-Health; 2016.

    Google Scholar 

  15. Wu HP, Wang YL, Chang HH, Huang GF, Guo MK. Dental anomalies in two patients with incontinentia pigmenti. J Formos Med Assoc. 2005;104(6):427–30.

    PubMed  Google Scholar 

  16. Jumlongras D, Bei M, Stimson JM, Wang WF, DePalma SR, Seidman CE, et al. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet. 2001;69(1):67–74. https://doi.org/10.1086/321271.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dalben Gda S, das Neves LT, Gomide MR. Oral findings in patients with Apert syndrome. J Appl Oral Sci. 2006;14(6):465–9.

    Article  PubMed  Google Scholar 

  18. Ababneh FK, Al-Swaid A, Elhag A, Youssef T, Alsaif S. Blepharo-cheilo-dontic (BCD) syndrome: expanding the phenotype, case report and review of literature. Am J Med Genet A. 2014;164(6):1525–9. https://doi.org/10.1002/ajmg.a.36465.

    Article  Google Scholar 

  19. Gemignani F, Marbini A. Disease course of Charcot-Marie-tooth disease type 2 and comorbidity. Arch Neurol. 2004;61(9):1470. https://doi.org/10.1001/archneur.61.9.1470-a.

    Article  PubMed  Google Scholar 

  20. Kalaskar R, Kalaskar AR. Oral manifestations of Ellis-van Creveld syndrome. Contemp Clin Dent. 2012;3(Suppl 1):S55–9. https://doi.org/10.4103/0976-237X.95106.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Giuliano F, Collignon P, Paquis-Flucklinger V, Bardot J, Philip N. A new three-generational family with frontometaphyseal dysplasia, male-to-female transmission, and a previously reported FLNA mutation. Am J Med Genet A. 2005;132A(2):222. https://doi.org/10.1002/ajmg.a.30396.

    Article  PubMed  Google Scholar 

  22. Tadini G, Santagada F, Brena M, Pezzani L, Nannini P. Ectodermal dysplasias: the p63 tail. G Ital Dermatol Venereol. 2013;148(1):53–8.

    PubMed  Google Scholar 

  23. Santhosh BP, Jethmalani P. Johanson-Blizzard syndrome: dental findings and management. J Contemp Dent Pract. 2013;14(3):544–7.

    Article  PubMed  Google Scholar 

  24. Merrett SJ, Durning P. Kartagener's syndrome: unusual dental morphology. Int J Paediatr Dent. 2005;15(3):220–3. https://doi.org/10.1111/j.1365-263X.2005.00629.x.

    Article  PubMed  Google Scholar 

  25. Wong D, Ramachandra SS, Singh AK. Dental management of patient with Williams Syndrome-A case report. Contemp Clin Dent. 2015;6(3):418–20. https://doi.org/10.4103/0976-237X.161908.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Akers AL, Ball KL, Clancy M, Comi AM, Faughnan ME, Gopal-Srivastava R, et al. Brain vascular malformation consortium: overview, progress and future directions. J Rare Disord. 2013;1(1):5.

    PubMed Central  PubMed  Google Scholar 

  27. Yu F, Cai W, Jiang B, Xu L, Liu S, Zhao S. A novel mutation of adenomatous polyposis coli (APC) gene results in the formation of supernumerary teeth. J Cell Mol Med. 2018;22(1):152–62. https://doi.org/10.1111/jcmm.13303.

    Article  PubMed  Google Scholar 

  28. Deutsch D, Haze-Filderman A, Blumenfeld A, Dafni L, Leiser Y, Shay B, et al. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system. Eur J Oral Sci. 2006;114(Suppl 1):183–9. https://doi.org/10.1111/j.1600-0722.2006.00301.x.

    Article  PubMed  Google Scholar 

  29. Brook AH. A unifying aetiological explanation for anomalies of human tooth number and size. Arch Oral Biol. 1984;29(5):373–8.

    Article  PubMed  Google Scholar 

  30. Brook AH, Jernvall J, Smith RN, Hughes TE, Townsend GC. The dentition: the outcome of morphogenesis leading to variations of tooth number, size and shape. Aust Dent J. 2014;59(Suppl 1):131–42. https://doi.org/10.1111/adj.12160.

    Article  PubMed  Google Scholar 

  31. Schalk-van der Weide Y, Bosman F. Tooth size in relatives of individuals with oligodontia. Arch Oral Biol. 1996;41(5):469–72.

    Article  PubMed  Google Scholar 

  32. Bishop K, Addy L, Knox J. Modern restorative management of patients with congenitally missing teeth: 1. Introduction, terminology and epidemiology. Dent Update. 2006;33(9):531–4. , 537. https://doi.org/10.12968/denu.2006.33.9.531.

    Article  PubMed  Google Scholar 

  33. Bloch-Zupan A, Sedano H, Scully C. Dento/oro/craniofacial anomalies and genetics. Boston: Elsevier; 2012. https://doi.org/10.1016/C2011-0-06093-3.

    Book  Google Scholar 

  34. Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One. 2013;8(8):e73705. https://doi.org/10.1371/journal.pone.0073705.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Yu P, Yang W, Han D, Wang X, Guo S, Li J, et al. Mutations in WNT10B are identified in individuals with oligodontia. Am J Hum Genet. 2016;99(1):195–201. https://doi.org/10.1016/j.ajhg.2016.05.012.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N. WNT10A mutations account for ¼ of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A. 2014;164A(2):353–9. https://doi.org/10.1002/ajmg.a.36243.

    Article  PubMed  Google Scholar 

  37. Oku T, Takayama T, Sato Y, Takada K, Hayashi T, Takahashi M, et al. A case of Gardner syndrome with a mutation at codon 1556 of APC: a suggested case of genotype-phenotype correlation in dental abnormality. Eur J Gastroenterol Hepatol. 2004;16(1):101–5.

    Article  PubMed  Google Scholar 

  38. Kramer PF, Feldens CA, Ferreira SH, Spiguel MH, Feldens EG. Dental anomalies and associated factors in 2- to 5-year-old Brazilian children. Int J Paediatr Dent. 2008;18(6):434–40. https://doi.org/10.1111/j.1365-263X.2008.00918.x.

    Article  PubMed  Google Scholar 

  39. Whittington BR, Durward CS. Survey of anomalies in primary teeth and their correlation with the permanent dentition. N Z Dent J. 1996;92(407):4–8.

    PubMed  Google Scholar 

  40. Rølling S, Poulsen S. Agenesis of permanent teeth in 8138 Danish schoolchildren: prevalence and intra-oral distribution according to gender. Int J Paediatr Dent. 2009;19(3):172–5. https://doi.org/10.1111/j.1365-263X.2008.00958.x.

    Article  PubMed  Google Scholar 

  41. Kim YH. Investigation of hypodontia as clinically related dental anomaly: prevalence and characteristics. ISRN Dent. 2011;2011:246135. https://doi.org/10.5402/2011/246135.

    Article  PubMed  Google Scholar 

  42. Mahabob MN, Anbuselvan GJ, Kumar BS, Raja S, Kothari S. Prevalence rate of supernumerary teeth among non-syndromic South Indian population: an analysis. J Pharm Bioallied Sci. 2012;4(Suppl 2):S373–5. https://doi.org/10.4103/0975-7406.100279.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Delli K, Livas C, Bornstein MM. Lateral incisor agenesis, canine impaction and characteristics of supernumerary teeth in a South European male population. Eur J Dent. 2013;7(3):278–83. https://doi.org/10.4103/1305-7456.115410.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Nicholls W. Dental anomalies in children with cleft lip and palate in Western Australia. Eur J Dent. 2016;10(2):254–8. https://doi.org/10.4103/1305-7456.178317.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kavadia S, Papadiochou S, Papadiochos I, Zafiriadis L. Agenesis of maxillary lateral incisors: a global overview of the clinical problem. Orthodontics (Chic). 2011;12(4):296–317.

    Google Scholar 

  46. Andrade DC, Loureiro CA, Araújo VE, Riera R, Atallah AN. Treatment for agenesis of maxillary lateral incisors: a systematic review. Orthod Craniofac Res. 2013;16(3):129–36. https://doi.org/10.1111/ocr.12015.

    Article  PubMed  Google Scholar 

  47. Apajalahti S, Hölttä P, Turtola L, Pirinen S. Prevalence of short-root anomaly in healthy young adults. Acta Odontol Scand. 2002;60(1):56–9.

    Article  PubMed  Google Scholar 

  48. Cutrera A, Allareddy V, Azami N, Nanda R, Uribe F. Is Short Root Anomaly (SRA) a risk factor for increased external apical root resorption in orthodontic patients? A retrospective case control study using cone beam computerized tomography. Orthod Craniofac Res. 2019;22(1):32–7. https://doi.org/10.1111/ocr.12254.

    Article  PubMed  Google Scholar 

  49. Yuen SW, Chan JC, Wei SH. Double primary teeth and their relationship with the permanent successors: a radiographic study of 376 cases. Pediatr Dent. 1987;9(1):42–8.

    PubMed  Google Scholar 

  50. Kotsanos N, Velonis D. Management of bulbous exophytic malformations of permanent mandibular incisors. Pediatr Dent. 2012;34(7):500–2.

    PubMed  Google Scholar 

  51. Chang NY, Park JH, Kim SC, Kang KH, Cho JH, Cho JW, et al. Forced eruption of impacted maxillary central incisors with severely dilacerated roots. Am J Orthod Dentofac Orthop. 2016;150(4):692–702. https://doi.org/10.1016/j.ajodo.2016.04.018.

    Article  Google Scholar 

  52. Papagerakis P, Mitsiadis T. Development and structure of teeth and periodontal teeth. In: Primer on the metabolic bone diseases and disorders of mineral metabolism, John P. Bilezikian (Editor-in-Chief), pp.901–910, 9th Edn, Wiley-Blackwell. 2018.

    Google Scholar 

  53. Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun HJ. A post-classical theory of enamel biomineralization and why we need one. Int J Oral Sci. 2012;4(3):129–34. https://doi.org/10.1038/ijos.2012.59.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kurek M, Żądzińska E, Sitek A, Borowska-Strugińska B, Rosset I, Lorkiewicz W. Neonatal line width in deciduous incisors from neolithic, mediaeval and modern skeletal samples from north-central Poland. Ann Anat. 2016;203:12–8. https://doi.org/10.1016/j.aanat.2015.02.006.

    Article  PubMed  Google Scholar 

  55. Zheng L, Ehardt L, McAlpin B, About I, Kim D, Papagerakis S, et al. The tick tock of odontogenesis. Exp Cell Res. 2014;325(2):83–9. https://doi.org/10.1016/j.yexcr.2014.02.007.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res. 2015;94(1):52–61. https://doi.org/10.1177/0022034514556708.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Shields ED, Bixler D, el-Kafrawy AM. A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol. 1973;18(4):543–53.

    Article  PubMed  Google Scholar 

  58. Zhang J, Wang J, Ma Y, Du W, Zhao S, Zhang Z, et al. A novel splicing mutation alters DSPP transcription and leads to dentinogenesis imperfecta type II. PLoS One. 2011;6(11):e27982. https://doi.org/10.1371/journal.pone.0027982.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Dong J, Gu T, Jeffords L, MacDougall M. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type III. Am J Med Genet A. 2005;132(3):305–9. https://doi.org/10.1002/ajmg.a.30460.

    Article  Google Scholar 

  60. Toomarian L, Mashhadiabbas F, Mirkarimi M, Mehrdad L. Dentin dysplasia type I: a case report and review of the literature. J Med Case Rep. 2010;4:1. https://doi.org/10.1186/1752-1947-4-1.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lee SK, Hu JC, Lee KE, Simmer JP, Kim JW. A dentin sialophosphoprotein mutation that partially disrupts a splice acceptor site causes type II dentin dysplasia. J Endod. 2008;34(12):1470–3. https://doi.org/10.1016/j.joen.2008.08.027.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Price JA, Wright JT, Walker SJ, Crawford PJ, Aldred MJ, Hart TC. Tricho-dento-osseous syndrome and amelogenesis imperfecta with taurodontism are genetically distinct conditions. Clin Genet. 1999;56(1):35–40.

    Article  PubMed  Google Scholar 

  63. Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A. 2005;133(2):138–41. https://doi.org/10.1002/ajmg.a.30521.

    Article  Google Scholar 

  64. Bufalino A, Paranaíba LM, Gouvêa AF, Gueiros LA, Martelli-Júnior H, Junior JJ, et al. Cleidocranial dysplasia: oral features and genetic analysis of 11 patients. Oral Dis. 2012;18(2):184–90. https://doi.org/10.1111/j.1601-0825.2011.01862.x.

    Article  PubMed  Google Scholar 

  65. Hu JC, Plaetke R, Mornet E, Zhang C, Sun X, Thomas HF, et al. Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci. 2000;108(3):189–94.

    Article  PubMed  Google Scholar 

  66. Hennekam RCM, Krantz ID, Allanson JE. Gorlin's syndromes of the head and neck. Oxford University Press. 5th ed. 2010.

    Google Scholar 

  67. Eli I, Sarnat H, Talmi E. Effect of the birth process on the neonatal line in primary tooth enamel. Pediatr Dent. 1989;11(3):220–3.

    PubMed  Google Scholar 

  68. Weerheijm KL, Duggal M, Mejàre I, Papagiannoulis L, Koch G, Martens LC, et al. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. EurJ Paediatr Dent. 2003;4(3):110–3.

    Google Scholar 

  69. Kevrekidou Α, Kosma Ι, Arapostathis Κ, Kotsanos Ν. Molar incisor hypomineralisation of eight- and 14-year-old children: prevalence, severity, and defect characteristics. Pediatr Dent. 2015;37(5):455–61.

    PubMed  Google Scholar 

  70. Dave M, Taylor G. Global prevalence of molar incisor hypomineralisation. Evid Based Dent. 2018;19(3):78–9. https://doi.org/10.1038/sj.ebd.6401324.

    Article  PubMed  Google Scholar 

  71. Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent. 2008;18(5):333–40. https://doi.org/10.1111/j.1365-263X.2007.00908.x.

    Article  PubMed  Google Scholar 

  72. Elfrink ME, ten Cate JM, Jaddoe VW, Hofman A, Moll HA, Veerkamp JS. Decidious molar hypomineralization and molar incisor hypomineralization. J Dent Res. 2012;91(6):551–5. https://doi.org/10.1177/0022034512440450.

    Article  PubMed  Google Scholar 

  73. Kevrekidou A, Kosma I, Kotsanos I, Arapostathis KN, Kotsanos N. Enamel opacities in all other than molar incisor hypomineralisation index teeth of adolescents. Int J Paediatr Dent. 2020; https://doi.org/10.1111/ipd.12735.

  74. Alifakioti E, Arhakis A, Oikonomidis S, Kotsanos N. Structural and chemical enamel characteristics of hypomineralised second primary molars. Eur Arch Paediatr Dent. 2020; https://doi.org/10.1007/s40368-020-00557-3.

  75. Perez VA, Mangum JE, Hubbard MJ. Pathogenesis of molar hypomineralisation: aged albumin demarcates chalky regions of hypomineralised enamel. Front Physiol. 2020;11:579015. https://doi.org/10.3389/fphys.2020.579015.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Fatturi AL, Wambier LM, Chibinski AC, Assunção LRDS, Brancher JA, Reis A, et al. A systematic review and meta-analysis of systemic exposure associated with molar incisor hypomineralization. Community Dent Oral Epidemiol. 2019; https://doi.org/10.1111/cdoe.12467.

  77. Kotsanos N, Kaklamanos EG, Arapostathis K. Treatment management of first permanent molars in children with molar-incisor hypomineralisation. Eur J Paediatr Dent. 2005;6(4):179–84.

    PubMed  Google Scholar 

  78. Linner T, Khazaei Y, Bücher K, Pfisterer J, Hickel R, Kühnisch J. Comparison of four different treatment strategies in teeth with molar-incisor hypomineralization-related enamel breakdown-A retrospective cohort study. Int J Paediatr Dent. 2020;30(5):597–606. https://doi.org/10.1111/ipd.12636.

    Article  PubMed  Google Scholar 

  79. Lygidakis NA, Dimou G, Stamataki E. Retention of fissure sealants using two different methods of application in teeth with hypomineralised molars (MIH): a 4 year clinical study. Eur Arch Paediatr Dent. 2009;10(4):223–6.

    Article  PubMed  Google Scholar 

  80. Gandhi S, Crawford P, Shellis P. The use of a 'bleach-etch-seal' deproteinization technique on MIH affected enamel. Int J Paediatr Dent. 2012;22(6):427–34. https://doi.org/10.1111/j.1365-263X.2011.01212.x.

    Article  PubMed  Google Scholar 

  81. Farah R, Drummond B, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralization to its mineral density. Int J Paediatr Dent. 2010;20(5):353–60. https://doi.org/10.1111/j.1365-263X.2010.01061.x.

    Article  PubMed  Google Scholar 

  82. Lygidakis NA, Chaliasou A, Siounas G. Evaluation of composite restorations in hypomineralised permanent molars: a four-year clinical study. Eur J Paediatr Dent. 2003;4(3):143–8.

    PubMed  Google Scholar 

  83. Jälevik B, Möller M. Evaluation of spontaneous space closure and development of permanent dentition after extraction of hypomineralized permanent first molars. Int J Paediatr Dent. 2007;17(5):328–35. https://doi.org/10.1111/j.1365-263X.2007.00849.x.

    Article  PubMed  Google Scholar 

  84. Lee HS, Kim SH, Kim SO, Lee JH, Choi HJ, Jung HS, et al. A new type of dental anomaly: molar-incisor malformation (MIM). Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(1):101–9. https://doi.org/10.1016/j.oooo.2014.03.014.

    Article  PubMed  Google Scholar 

  85. Witt CV, Hirt T, Rutz G, Luder HU. Root malformation associated with a cervical mineralized diaphragm - a distinct form of tooth abnormality? Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(4):e311–9. https://doi.org/10.1016/j.oooo.2013.06.030.

    Article  PubMed  Google Scholar 

  86. Wright JT, Curran A, Kim KJ, Yang YM, Nam SH, Shin TJ, et al. Molar root-incisor malformation: considerations of diverse developmental and etiologic factors. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(2):164–72. https://doi.org/10.1016/j.oooo.2015.08.024.

    Article  PubMed  Google Scholar 

  87. Cleaton-Jones P, Hargreaves JA. Comparison of three fluorosis indices in a Namibian community with twice optimum fluoride in the drinking water. J Dent Assoc S Afr. 1990;45(5):173–5.

    PubMed  Google Scholar 

  88. Croll TP. Enamel microabrasion: observations after 10 years. J Am Dent Assoc. 1997;128(Suppl):45S–50S.

    Article  PubMed  Google Scholar 

  89. Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries--a proposed definition. J Dent Res. 2012;91(6):544–50. https://doi.org/10.1177/0022034512444929.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Sundell S. Hereditary amelogenesis imperfecta. An epidemiological, genetic and clinical study in a Swedish child population. Swed Dent J Suppl. 1986;31:1–38.

    PubMed  Google Scholar 

  91. Bäckman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in a northern Swedish county. Community Dent Oral Epidemiol. 1986;14(1):43–7.

    Article  PubMed  Google Scholar 

  92. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17. https://doi.org/10.1186/1750-1172-2-17.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988;17(9–10):547–53.

    Article  PubMed  Google Scholar 

  94. Darling AI. Some observations on amelogenesis imperfecta and calcification of the dental enamel. Proc R Soc Med. 1956;49(10):759–65.

    PubMed Central  PubMed  Google Scholar 

  95. Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta. J Dent Res. 2005;84(12):1117–26. https://doi.org/10.1177/154405910508401206.

    Article  PubMed  Google Scholar 

  96. Aldred MJ, Savarirayan R, Crawford PJ. Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis. 2003;9(1):19–23.

    Article  PubMed  Google Scholar 

  97. Wright JT, Torain M, Long K, Seow K, Crawford P, Aldred MJ, et al. Amelogenesis imperfecta: genotype-phenotype studies in 71 families. Cells Tissues Organs. 2011;194(2–4):279–83. https://doi.org/10.1159/000324339.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Rowley R, Hill FJ, Winter GB. An investigation of the association between anterior open-bite and amelogenesis imperfecta. Am J Orthod. 1982;81(3):229–35.

    Article  PubMed  Google Scholar 

  99. Mårdh CK, Bäckman B, Holmgren G, Hu JC, Simmer JP, Forsman-Semb K. A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet. 2002;11(9):1069–74. https://doi.org/10.1093/hmg/11.9.1069.

    Article  PubMed  Google Scholar 

  100. Ravassipour DB, Powell CM, Phillips CL, Hart PS, Hart TC, Boyd C, et al. Variation in dental and skeletal open bite malocclusion in humans with amelogenesis imperfecta. Arch Oral Biol. 2005;50(7):611–23. https://doi.org/10.1016/j.archoralbio.2004.12.003.

    Article  PubMed  Google Scholar 

  101. Ramos AL, Pascotto RC, Iwaki Filho L, Hayacibara RM, Boselli G. Interdisciplinary treatment for a patient with open-bite malocclusion and amelogenesis imperfecta. Am J Orthod Dentofac Orthop. 2011;139(4 Suppl):S145–53. https://doi.org/10.1016/j.ajodo.2009.05.031.

    Article  Google Scholar 

  102. Wright JT, Deaton TG, Hall KI, Yamauchi M. The mineral and protein content of enamel in amelogenesis imperfecta. Connect Tissue Res. 1995;32(1–4):247–52.

    Article  PubMed  Google Scholar 

  103. Seow WK. Taurodontism of the mandibular first permanent molar distinguishes between the tricho-dento-osseous (TDO) syndrome and amelogenesis imperfecta. Clin Genet. 1993;43(5):240–6.

    Article  PubMed  Google Scholar 

  104. Wang S, Choi M, Richardson AS, Reid BM, Seymen F, Yildirim M, et al. STIM1 and SLC24A4 are critical for enamel maturation. J Dent Res. 2014;93(7 Suppl):94S–100S. https://doi.org/10.1177/0022034514527971.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Zhu J, Feng Q, Stathopulos PB. The STIM-Orai pathway: STIM-Orai structures: isolated and in complex. Adv Exp Med Biol. 2017;993:15–38. https://doi.org/10.1007/978-3-319-57732-6_2.

    Article  PubMed  Google Scholar 

  106. Zheng L, Zinn V, Lefkelidou A, Taqi N, Chatzistavrou X, Balam T, et al. Orai1 expression pattern in tooth and craniofacial ectodermal tissues and potential functions during ameloblast differentiation. Dev Dyn. 2015;244(10):1249–58. https://doi.org/10.1002/dvdy.24307.

    Article  PubMed  Google Scholar 

  107. Papagerakis P, Lin HK, Lee KY, Hu Y, Simmer JP, Bartlett JD, et al. Premature stop codon in MMP20 causing amelogenesis imperfecta. J Dent Res. 2008;87(1):56–9. https://doi.org/10.1177/154405910808700109.

    Article  PubMed  Google Scholar 

  108. Kantaputra PN, Kaewgahya M, Khemaleelakul U, Dejkhamron P, Sutthimethakorn S, Thongboonkerd V, et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am J Med Genet A. 2014;164A(1):1–9. https://doi.org/10.1002/ajmg.a.36187.

    Article  PubMed  Google Scholar 

  109. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336(6085):1150–3. https://doi.org/10.1126/science.1217817.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Ashkenazi M, Rafe Z, Sarnat H, Levin L. Nephrocalcinosis associated with continuous enamel hypoplasia and severe alveolar bone loss: a case report and literature review. Pediatr Dent. 2014;36(3):250–3.

    PubMed  Google Scholar 

  111. Ababneh FK, AlSwaid A, Youssef T, Al Azzawi M, Crosby A, AlBalwi MA. Hereditary deletion of the entire FAM20C gene in a patient with Raine syndrome. Am J Med Genet A. 2013;161A(12):3155–60. https://doi.org/10.1002/ajmg.a.36160.

    Article  PubMed  Google Scholar 

  112. Cohn C. Zirconia prefabricated crowns for pediatric patients with primary dentition: technique and cementation for esthetic outcomes. Compend Contin Educ Dent. 2016;37(8):554–8.

    PubMed  Google Scholar 

  113. Seow WK, Amaratunge A. The effects of acid-etching on enamel from different clinical variants of amelogenesis imperfecta: an SEM study. Pediatr Dent. 1998;20(1):37–42.

    PubMed  Google Scholar 

  114. Alonso V, Caserio M. A clinical study of direct composite full-coverage crowns: long-term results. Oper Dent. 2012;37(4):432–41. https://doi.org/10.2341/11-229-S.

    Article  PubMed  Google Scholar 

  115. Dashash M, Yeung CA, Jamous I, Blinkhorn A. Interventions for the restorative care of amelogenesis imperfecta in children and adolescents. Cochrane Database Syst Rev. 2013;6:CD007157. https://doi.org/10.1002/14651858.CD007157.pub2.

    Article  Google Scholar 

  116. Barron MJ, McDonnell ST, Mackie I, Dixon MJ. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis. 2008;3:31. https://doi.org/10.1186/1750-1172-3-31.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Lee SK, Lee KE, Hwang YH, Kida M, Tsutsumi T, Ariga T, et al. Identification of the DSPP mutation in a new kindred and phenotype-genotype correlation. Oral Dis. 2011;17(3):314–9. https://doi.org/10.1111/j.1601-0825.2010.01760.x.

    Article  PubMed  Google Scholar 

  118. Cherkaoui Jaouad I, El Alloussi M, Laarabi FZ, Bouhouche A, Ameziane R, Sefiani A. Inhabitual autosomal recessive form of dentin dysplasia type I in a large consanguineous Moroccan family. Eur J Med Genet. 2013;56(8):442–4. https://doi.org/10.1016/j.ejmg.2013.05.003.

    Article  PubMed  Google Scholar 

  119. Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, et al. Homozygosity map** and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet. 2011;89(6):773–81. https://doi.org/10.1016/j.ajhg.2011.11.002.

    Article  PubMed Central  PubMed  Google Scholar 

  120. McKnight DA, Simmer JP, Hart PS, Hart TC, Fisher LW. Overlap** DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta. J Dent Res. 2008;87(12):1108–11. https://doi.org/10.1177/154405910808701217.

    Article  PubMed  Google Scholar 

  121. Koskinen S, Keski-Filppula R, Alapulli H, Nieminen P, Anttonen V. Familial oligodontia and regional odontodysplasia associated with a PAX9 initiation codon mutation. Clin Oral Investig. 2019; https://doi.org/10.1007/s00784-019-02849-5.

  122. Alotaibi O, Alotaibi G, Alfawaz N. Regional odontodysplasia: an analysis of 161 cases from 1953 to 2017. Saudi Dent J. 2019;31(3):306–10. https://doi.org/10.1016/j.sdentj.2019.04.012.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Al-Batayneh OB, Al Tawashi EK. Pre-eruptive intra-coronal resorption of dentine: a review of aetiology, diagnosis, and management. Eur Arch Paediatr Dent. 2020;21(1):1–11. https://doi.org/10.1007/s40368-019-00470-4.

    Article  PubMed  Google Scholar 

  124. Giuca MR, Cei G, Gigli F, Gandini P. Oral signs in the diagnosis of celiac disease: review of the literature. Minerva Stomatol. 2010;59(1–2):33–43.

    PubMed  Google Scholar 

  125. Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States. Arch Intern Med. 2003;163(3):286–92.

    Article  PubMed  Google Scholar 

  126. Raether D, Klingberg G, Magnusson L, Norén JG. Histology of primary incisor enamel in children with early onset celiac disease. Pediatr Dent. 1988;10(4):301–3.

    PubMed  Google Scholar 

  127. Papagerakis P, Hotton D, Lezot F, Brookes S, Bonass W, Robinson C, et al. Evidence for regulation of amelogenin gene expression by 1,25-dihydroxyvitamin D(3) in vivo. J Cell Biochem. 1999;76(2):194–205.

    Article  PubMed  Google Scholar 

  128. Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3(1):R13–30. https://doi.org/10.1530/EC-13-0103.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Al-Jundi SH, Dabous IM, Al-Jamal GA. Craniofacial morphology in patients with hypophosphataemic vitamin-D-resistant rickets: a cephalometric study. J Oral Rehabil. 2009;36(7):483–90. https://doi.org/10.1111/j.1365-2842.2009.01963.x.

    Article  PubMed  Google Scholar 

  130. Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, et al. Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res. 2011;26(10):2389–98. https://doi.org/10.1002/jbmr.454.

    Article  PubMed  Google Scholar 

  131. van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, et al. Cementum and dentin in hypophosphatasia. J Dent Res. 2005;84(11):1021–5. https://doi.org/10.1177/154405910508401110.

    Article  PubMed  Google Scholar 

  132. Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016;53(2):98–110. https://doi.org/10.1136/jmedgenet-2015-103302.

    Article  PubMed  Google Scholar 

  133. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8–26. https://doi.org/10.1002/ajmg.c.31552.

    Article  PubMed  Google Scholar 

  134. Lygidakis NA, Lindenbaum RH. Pitted enamel hypoplasia in tuberous sclerosis patients and first-degree relatives. Clin Genet. 1987;32(4):216–21.

    Article  PubMed  Google Scholar 

  135. Athanasiadou E, Vlachou C, Theocharidou A, Tilaveridis I, Vargiami E, Antoniadis K, et al. When a pedodontic examination leads to the diagnosis of osteopetrosis: a case report. Spec Care Dentist. 2020;40(1):113–20. https://doi.org/10.1111/scd.12427.

    Article  PubMed  Google Scholar 

  136. Battineni S, Clarke P. Green teeth are a late complication of prolonged conjugated hyperbilirubinemia in extremely low birth weight infants. Pediatr Dent. 2012;34(4):103–6.

    PubMed  Google Scholar 

  137. Kotsanos N. Prevalence of tetracycline deposits in premolar teeth extracted for orthodontic purposes. Br Dent J. 1982;152(3):91–2.

    Article  PubMed  Google Scholar 

  138. Shulman JD, Maupome G, Clark DC, Levy SM. Perceptions of desirable tooth color among parents, dentists and children. J Am Dent Assoc. 2004;135(5):595–604.

    Article  PubMed  Google Scholar 

  139. Lee SS, Zhang W, Lee DH, Li Y. Tooth whitening in children and adolescents: a literature review. Pediatr Dent. 2005;27(5):362–8.

    PubMed  Google Scholar 

  140. Kugel G, Gerlach RW, Aboushala A, Ferreira S, Magnuson B. Long-term use of 6.5% hydrogen peroxide bleaching strips on tetracycline stain: a clinical study. Compend Contin Educ Dent. 2011;32(8):50–6.

    PubMed  Google Scholar 

  141. Mu YD, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Mutational analysis of AXIN2, MSX1, and PAX9 in two Mexican oligodontia families. Genet Mol Res. 2013;12(4):4446–58. https://doi.org/10.4238/2013.October.10.10.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Rey T, Tarabeux J, Gerard B, Delbarre M, Le Béchec A, Stoetzel C, et al. Protocol GenoDENT: implementation of a new ngs panel for molecular diagnosis of genetic disorders with orodental involvement. Methods Mol Biol. 1922;2019:407–52. https://doi.org/10.1007/978-1-4939-9012-2_36.

    Article  Google Scholar 

  143. Pinheiro M, Freire-Maia N. Ectodermal dysplasias: a clinical classification and a causal review. Am J Med Genet. 1994;53(2):153–62. https://doi.org/10.1002/ajmg.1320530207.

    Article  PubMed  Google Scholar 

  144. Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162–72. https://doi.org/10.1016/S0140-6736(07)61090-3.

    Article  PubMed  Google Scholar 

  145. Gurrieri F, Franco B, Toriello H, Neri G. Oral–facial–digital syndromes: review and diagnostic guidelines. Am J Med Genet A. 2007;143(24):3314–23. https://doi.org/10.1002/ajmg.a.32032.

    Article  Google Scholar 

  146. Selvi R, Mukunda PA. Role of SOX9 in the etiology of Pierre-Robin syndrome. Iran J Basic Med Sci. 2013;16(5):700–4.

    Google Scholar 

  147. Alhashimi N, Abed Al Jawad FH, Al Sheeb M, Al Emadi B, Al-Abdulla J, Al Yafei H. The prevalence and distribution of nonsyndromic hyperdontia in a group of Qatari orthodontic and pediatric patients. Eur J Dent. 2016;10(3):392–6. https://doi.org/10.4103/1305-7456.184162.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Singh K, Singh A, Kumar P, Gupta N. Prosthodontic management of a patient with Gardner's syndrome: a clinical case report. Dent Res J (Isfahan). 2014;11(2):276–80.

    Google Scholar 

  149. Aletaha M, Fateh-Moghadam H. Gardner syndrome. J Ophthalmic Vis Res. 2012;7(3):257–60.

    PubMed Central  PubMed  Google Scholar 

  150. Öner AY, Pocan S. Gardner's syndrome: a case report. Br Dent J. 2006;200(12):666–7. https://doi.org/10.1038/sj.bdj.4813719.

    Article  PubMed  Google Scholar 

  151. Seow WK. Dental development in amelogenesis imperfecta: a controlled study. Pediatr Dent. 1995;17(1):26–30.

    PubMed  Google Scholar 

  152. Ritter AV. Talking with patients dental fluorosis. J Esthet Restor Dent. 2005;17(5):326–7. https://doi.org/10.1111/j.1708-8240.2005.tb00139.x.

    Article  PubMed  Google Scholar 

  153. Weerheijm KL, Jälevik B, Alaluusua S. Molar–incisor hypomineralisation. Caries Res. 2001;35(5):390–1. https://doi.org/10.1159/000047479.

    Article  PubMed  Google Scholar 

  154. de Nanclares GP, Fernández-Rebollo E, Santin I, García-Cuartero B, Gaztambide S, Menéndez E, et al. Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab. 2007;92(6):2370–3. https://doi.org/10.1210/jc.2006-2287.

    Article  PubMed  Google Scholar 

  155. Kitanaka S, Kato S. Vitamin D-dependent rickets Type I and Type II. The genetics of osteoporosis and metabolic bone disease. Humana Press. 2000;95–110. https://doi.org/10.1007/978-1-59259-033-9_6.

  156. Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, et al. Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J. 2005;390(1):325–31. https://doi.org/10.1042/BJ20041799.

    Article  PubMed Central  PubMed  Google Scholar 

  157. Ye X, Li K, Liu L, Yu F, **ong F, Fan Y, et al. Dentin dysplasia type I—novel findings in deciduous and permanent teeth. BMC Oral Health. 2015;15:163. https://doi.org/10.1186/s12903-015-0149-9.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Rolvien T, Koehne T, Kornak U, Lehmann W, Amling M, Schinke T, et al. A novel ANO5 mutation causing gnathodiaphyseal dysplasia with high bone turnover osteosclerosis. J Bone Miner Res. 2017;32(2):277–84. https://doi.org/10.1002/jbmr.2980.

    Article  PubMed  Google Scholar 

  159. Alsufyani NA, Lam EW. Osseous (cemento-osseous) dysplasia of the jaws: clinical and radiographic analysis. J Can Dent Assoc. 2011;77:b70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Sarnat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotsanos, N., Papagerakis, P., Sarnat, H., Bloch-Zupan, A. (2022). Developmental Defects of the Teeth and Their Hard Tissues. In: Kotsanos, N., Sarnat, H., Park, K. (eds) Pediatric Dentistry. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-78003-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78003-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78002-9

  • Online ISBN: 978-3-030-78003-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation