Improvement of Operating Processes of High-Head Tubular Horizontal Hydraulic Turbines

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

The article deals with new promising directions for the hydropower industry, which enables the hydraulic turbine operating range to be expanded in terms of heads and flow rates, the reliability of the equipment to be increased during peak loads of daily regulation and especially at start-up and shut-down modes, the capacity to be raised by 1.5 times, i.e., to increase the power of the hydraulic unit with the runner of the same size and significantly increase the average operating efficiency. New designs protected by many patents of Ukraine gave advantages of tubular horizontal bulb hydraulic units over Kaplan and Francis turbines for medium and high heads up to 230–250 m. The paper presents the directions and procedure of calculation that sharply reduces energy losses in hydraulic turbine inlet due to the formation of laminar flow in the near-wall boundary layers of the nozzle vanes that form the angular momentum required for optimum operation, a more uniform inlet conditions upstream the runner, allowing to reduce shock losses at the inlet to the runner and providing conditions for a laminar boundary layer at the inlet elements of the blades for operating modes close to best efficiency point. As a result, new design concepts and more advanced solutions in the system for control and computation of the flow enable the reliability and the basic operating parameters of new types of hydraulic turbines to be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kougiasa, I., et al.: Analysis of emerging technologies in the hydropower sector. Renew. Sustain. Energy Rev. 113, 109257 (2019). https://doi.org/10.1016/j.rser.2019.109257

    Article  Google Scholar 

  2. Oyegoke, T., Akanji, I.I., Ajayi, O.O., Obajulu, E.A., Abemi, A.O.: Thermodynamic and economic evaluation of gas turbine power plants. J. Eng. Sci. 7(1), G1–G8 (2020). https://doi.org/10.21272/jes.2020.7(1).g1

    Article  Google Scholar 

  3. Kougias, I., Szabo, S.: Pumped hydroelectric storage utilization assessment: forerunner of renewable energy integration or Trojan horse? Energy 140(1), 318–329 (2017). https://doi.org/10.1016/j.energy.2017.08.106

    Article  Google Scholar 

  4. Aarrestad, K., Hatlen, L.M.: Facts: energy and water resources in Norway. Norwegian Ministry of Petroleum and Energy, Norway (2015)

    Google Scholar 

  5. de Andrade Furtado, G.C., Amarante Mesquita, A.L., Morabito, A., Hendrick, P., Hunt, J.D.: Using hydropower waterway locks for energy storage and renewable energies integration. Appl. Energy 275, 115361 (2020). https://doi.org/10.1016/j.apenergy.2020.115361

    Article  Google Scholar 

  6. Wang, B., Mi, Z., Nistor, I., Yuan, X.-C.: How does hydrogen-based renewable energy change with economic development? Empirical evidence from 32 countries. Int. J. Hydrogen Energy 43(25), 11629–11638 (2018). https://doi.org/10.1016/j.ijhydene.2017.03.059

    Article  Google Scholar 

  7. Gelich, N., Panasiuk, Y., Onishchyk, V.: Alternative energy in Ukraine: state and prospects of development. Econ. J. Lesya Ukrainka Eastern Eur. Natl. Univ. 2(22), 143–151 (2020). https://doi.org/10.29038/2411-4014-2020-02-143-151

    Article  Google Scholar 

  8. Liu, X., Luo, Y., Wang, Z.: A review on fatigue damage mechanism in hydro turbines. Renew. Sustain. Energy Rev. 54, 1–14 (2016)

    Article  Google Scholar 

  9. Pavlenko, I., Trojanowska, J., Ivanov, V., Liaposhchenko, O.: Parameter identification of hydro-mechanical processes using artificial intelligence systems. Int. J. Mechatron. Appl. Mech. 2019(5), 19–26 (2019)

    Google Scholar 

  10. Qidun, M.B.S.: Two different design methods and simulations of axial-flow hydraulic turbine runner. In: 4th International Conference on Sustainable Energy Engineering and Application (ICSEEA 2016), Jakarta, Indonesia, pp. 100–106 (2016)

    Google Scholar 

  11. Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14

    Chapter  Google Scholar 

  12. Nishi, Y., Sato, G., Shiohara, D., Inagaki, T., Kikuchi, N.: Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy 112, 53–62 (2017). https://doi.org/10.1016/j.renene.2017.04.047

    Article  Google Scholar 

  13. Khovanskyi, S., Pavlenko, I., Pitel, J., Mizakova, J., Ochowiak, M., Grechka, I.: Solving the coupled aerodynamic and thermal problem for modeling the air distribution devices with perforated plates. Energies 12(18), 3488 (2019). https://doi.org/10.3390/en12183488

    Article  Google Scholar 

  14. Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, М., Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_76

    Chapter  Google Scholar 

  15. Fesenko, A., Yevsiukova, F., Basova, Y., Ivanova, M., Ivanov, V.: Prospects of using hydrodynamic cavitation for enhancement of efficiency of fluid working medium preparation technologies. Periodica Polytechnica Mech. Eng. 62(4), 269–276 (2018)

    Article  Google Scholar 

  16. Monkova, K., et al.: Condition monitoring of Kaplan turbine bearings using vibro-diagnostics. Int. J. Mech. Eng. Robot. Res. 9(8), 1182–1188 (2020). https://doi.org/10.18178/ijmerr.9.8.1182-1188

    Article  Google Scholar 

  17. Morabito, A., Steimes, J., Hendrick, P.: Pumped hydroelectric energy storage: a comparison of turbomachinery configurations. In: Erpicum, et al. (eds.) Sustainable Hydraulics in the Era of Global Change, pp. 261–288. Taylor & Francis Group, London (2016)

    Google Scholar 

  18. Stewart, M.: Rotary pumps. In: Stewart, M. (eds.) Surface Production Operations, pp. 415–440. Gulf Professional Publishing (2019). https://doi.org/10.1016/B978-0-12-809895-0.00005-3

  19. Nishi, Y., Inagaki, T., Okubo, K., Kikuchi, N.: Study on an axial flow hydraulic turbine with collection device. Int. J. Rotat. Mach. 2014 (2014). Article ID: 308058. https://doi.org/10.1155/2014/308058

  20. Li, F., Li, Y., Sun, X., Yang, X.: Numerical simulation of flow velocity characteristics during capsule hydraulic transportation in a horizontal pipe. Water 12, 1015 (2020). https://doi.org/10.3390/w12041015

    Article  Google Scholar 

  21. Rogovyi, A., Khovanskyi, S., Hrechka, I., Gaydamaka, A.: Studies of the swirling submerged flow through a confuser. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 85–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_9

    Chapter  Google Scholar 

  22. Kalinkevych, M., Gusak, O., Skoryk, A., Shcherbakov, O.: Design and flow parameters calculation of the turbomachine channels. Procedia Eng. 39, 275–285 (2012). https://doi.org/10.1016/j.proeng.2012.07.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Gusak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gusak, O., Cherkashenko, M., Potetenko, O., Hasiuk, A., Rezvaya, K. (2021). Improvement of Operating Processes of High-Head Tubular Horizontal Hydraulic Turbines. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation