Photocatalysis: Introduction, Mechanism, and Effective Parameters

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The widely investigated heterogeneous photocatalysis offers an environmentally friendly, efficient, and versatile solution for several environmental problems. Among others, the removal of harmful organic pollutants and the generation of H2 via water splitting are well-known and most widely studied applications. The process is based on the charge separation caused by the excitation of semiconductor photocatalyst via photon absorption. Due to the intensive development of material science, in addition to the well-known TiO2 and ZnO, several new semiconductor materials have been designed and synthesized to increase the efficiency of heterogeneous photocatalysis and utilization of solar and/or visible light. This chapter describes the principles and mechanisms of heterogeneous photocatalysis, including the formation of photogenerated charge carriers, the role of different reactive species, and the effect of key parameters on the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162

    Article  CAS  PubMed  Google Scholar 

  2. Hassan I, Bream AS, El-Sayed A, Yousef AM (2017) International journal of advanced research in biological sciences assessment of disinfection by-products levels in aga surface water plant and its distribution system, Dakhlia Egypt. Int J Adv Res Biol Sci 4(4):37–43

    Article  CAS  Google Scholar 

  3. Zhang Y, Geißen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  PubMed  Google Scholar 

  4. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res 139:118–131

    Article  CAS  PubMed  Google Scholar 

  5. Speight JG (1996) Green chemistry: designing chemistry for the environment. Energy Sources 18(7):833–834 (Review of: Anastas PT, Williamson TC, ACS symposium series No. 626. American Chemical Society, Washington, DC, $89.95, ISBN 0-8412-3399-3)

    Google Scholar 

  6. de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN (2019) Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharm J 27(1):1–8

    Article  PubMed  Google Scholar 

  7. Zhang J, Nosaka Y (2013) Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension. J Phys Chem C 117(3):1383–1391

    Article  CAS  Google Scholar 

  8. Baly ECC, Heilbron IM, Barker WF (1921) CX.—photocatalysis, Part I. The synthesis of formaldehyde and carbohydrates from carbon dioxide and water. J Chem Soc Trans 119:1025–1035

    Article  CAS  Google Scholar 

  9. Goodeve CF, Kitchener JA (1938) The mechanism of photosensitisation by solids. Trans Faraday Soc 34:902–908

    Article  CAS  Google Scholar 

  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29(34):13

    Google Scholar 

  12. Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photobiol C Photochem Rev Elsevier B.V. 27:72–99

    Google Scholar 

  13. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Google Scholar 

  14. Anwer H, Mahmood A, Lee J, Kim KH, Park JW, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12:955–972 (Tsinghua University Press)

    Google Scholar 

  15. Emeline AV, Kuznetsov VN, Ryabchuk VK, Serpone N (2012) On the way to the creation of next generation photoactive materials. Environ Sci Pollut Res 19(9):3666–3675

    Article  CAS  Google Scholar 

  16. Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677

    Article  CAS  PubMed  Google Scholar 

  17. Schreck M, Niederberger M (2019) Photocatalytic gas phase reactions. Chem Mater Am Chem Soc 31:597–618

    Google Scholar 

  18. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Li Y, Peng S, Lu G, Li S (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15(20):7657–7665

    Article  CAS  PubMed  Google Scholar 

  20. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43(22):7681–7717

    Article  CAS  PubMed  Google Scholar 

  21. Shao W, Wang H, Zhang X (2018) Elemental do** for optimizing photocatalysis in semiconductors. Dalton Trans 47(36):12642–12646

    Article  CAS  PubMed  Google Scholar 

  22. Colinge JP, Colinge CA (2002) Physics of Semiconductor devices. Kluwer Academic Publishers, Springer International Publishing, p 436

    Google Scholar 

  23. Zheng H, Okabe TH (2008) Recovery of titanium metal scrap by utilizing chloride wastes. J Alloys Compd 461(1–2):459–466

    Article  CAS  Google Scholar 

  24. Yang L, Li X, Wang Z, Shen Y, Liu M (2017) Natural fiber templated TiO2 microtubes via a double soaking sol-gel route and their photocatalytic performance. Appl Surf Sci 420:346–354

    Article  CAS  Google Scholar 

  25. Wang S, Wang H, Zhang R, Zhao L, Wu X, **e H et al (2018) Egg yolk-derived carbon: achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. J Alloys Compd 746:567–575

    Article  CAS  Google Scholar 

  26. Rodríguez-Padrón D, Luque R, Muñoz-Batista MJ (2020) Waste-derived materials: opportunities in photocatalysis. Top Curr Chem 378(1):1–28

    CAS  Google Scholar 

  27. Colmenares JC, Lisowski P, Bermudez JM, Cot J, Luque R (2014) Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Appl Catal B Environ 150–151:432–437

    Article  CAS  Google Scholar 

  28. Babar S, Gavade N, Shinde H, Gore A, Mahajan P, Lee KH et al (2019) An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: sustainable e-waste management. J Environ Chem Eng 7(2)

    Google Scholar 

  29. Garg S, Yadav M, Chandra A, Sapra S, Gahlawat S, Ingole PP et al (2018) Facile green synthesis of BiOBr nanostructures with superior visible-light-driven photocatalytic activity. Materials 11(8)

    Google Scholar 

  30. Garg S, Yadav M, Chandra A, Sapra S, Gahlawat S, Ingole PP et al (2018) Biofabricated BiOI with enhanced photocatalytic activity under visible light irradiation. RSC Adv 8(51):29022–29030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13(4):225–232

    Article  CAS  Google Scholar 

  32. Friehs E, AlSalka Y, Jonczyk R, Lavrentieva A, Jochums A, Walter JG et al (2016) Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. J Photochem Photobiol C Photochem Rev 29:1–28

    Article  CAS  Google Scholar 

  33. IUPAC (2009) IUPAC compendium of chemical terminology

    Google Scholar 

  34. Yu PY, Cardona M (1996) Optical properties. In: Fundamentals of semiconductors. Springer, Berlin, Heidelberg, pp 234–331

    Google Scholar 

  35. Yu PY, Cardona M (1996) Fundamentals of semiconductors. Fundamentals of semiconductors. Springer, Berlin, Heidelberg

    Google Scholar 

  36. Bhattacharyya S, Kundu S, Bramhaiah K (2020) Carbon-based nanomaterials: in the quest of alternative metal free photocatalysts for solar water splitting. Nanoscale Advances

    Google Scholar 

  37. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C Photochem Rev 13(4):263–276

    Article  CAS  Google Scholar 

  38. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44(2):540–577

    Article  CAS  Google Scholar 

  39. Montoya JF, Atitar MF, Bahnemann DW, Peral J, Salvador P (2014) Comprehensive kinetic and mechanistic analysis of TiO2 photocatalytic reactions according to the direct-indirect model: (II) experimental validation. J Phys Chem C 118(26):14276–14290

    Article  CAS  Google Scholar 

  40. Montoya JF, Peral J, Salvador P (2014) Comprehensive kinetic and mechanistic analysis of TiO2 photocatalytic reactions according to the direct-indirect model: (I) theoretical approach. J Phys Chem C 118(26):14266–14275

    Article  CAS  Google Scholar 

  41. Mitroka S, Zimmeck S, Troya D, Tanko JM (2010) How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions. J Am Chem Soc 132(9):2907–2913

    Article  CAS  PubMed  Google Scholar 

  42. Nosaka Y, Nosaka A (2016) Understanding hydroxyl radical (∙OH) Generation processes in photocatalysis. ACS Energy Lett 1(2):356–359

    Article  CAS  Google Scholar 

  43. Kim W, Tachikawa T, Moon GH, Majima T, Choi W (2014) Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew Chem Int Ed 53(51):14036–14041

    Article  CAS  Google Scholar 

  44. Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (∙OH). chemical reviews. Chem Rev 115(24):13051–13092

    Google Scholar 

  45. Wojnárovits L, Takács E (2014) Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: a review. Radiat Phys Chem 96:120–134

    Article  CAS  Google Scholar 

  46. Ervens B, Gligorovski S, Herrmann H (2003) Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys Chem Chem Phys 5(9):1811–1824

    Article  CAS  Google Scholar 

  47. Maira AJ, Yeung KL, Soria J, Coronado JM, Belver C, Lee CY et al (2001) Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl Catal B Environ 29(4):327–336

    Article  CAS  Google Scholar 

  48. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  49. Ollis DF, Al-Ekabi Hussain (1993) Photocatalytic purification and treatment of water and air. In: Proceedings of the 1st international conference on TiO2 photocatalytic purification and treatment of water and air. Elsevier Science Ltd., pp 365–373

    Google Scholar 

  50. Hegedus M, Dombi A, Kiricsi I (2001) Photocatalytic decomposition of tetrachloroethylene in the gas phase with titanium dioxide as catalyst. React Kinet Catal Lett 74(2):209–215

    Article  CAS  Google Scholar 

  51. Pelaez M, Falaras P, Likodimos V, O’Shea K, de la Cruz AA, Dunlop PSM et al (2016) Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. J Mol Catal A Chem 425:183–189

    Article  CAS  PubMed  Google Scholar 

  52. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  PubMed  Google Scholar 

  53. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9(1):1–12

    Article  CAS  Google Scholar 

  54. Petri BG, Watts RJ, Teel AL, Huling SG, Brown RA (2011) Fundamentals of ISCO using hydrogen peroxide. In: In situ chemical oxidation for groundwater remediation, vol 3, 1st edn. Springer Science+Business Media, New York, pp 33–88

    Google Scholar 

  55. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84

    Article  CAS  Google Scholar 

  56. Krumova K, Cosa G (2016) Chapter 1: Overview of reactive oxygen species. In: Singlet oxygen: applications in biosciences and nanosciences, pp 1–21

    Google Scholar 

  57. Hayyan M, Hashim MA, Alnashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev Am Chem Soc 116:3029–3085

    Google Scholar 

  58. Daimon T, Hirakawa T, Kitazawa M, Suetake J, Nosaka Y (2008) Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts. Appl Catal A Gen 340(2):169–175

    Article  CAS  Google Scholar 

  59. Nosaka Y, Daimon T, Nosaka AY, Murakami Y (2004) Singlet oxygen formation in photocatalytic TiO2 aqueous suspension. Phys Chem Chem Phys 6(11):2917–2918

    Article  CAS  Google Scholar 

  60. Guo X, Li Q, Zhang M, Long M, Kong L, Zhou Q et al (2015) Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen. Chemosphere 120:521–526

    Article  CAS  PubMed  Google Scholar 

  61. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543

    Article  CAS  PubMed  Google Scholar 

  62. Brustolon M, Giamello E (2009) Electron paramagnetic resonance: a practitioner’s toolkit. Wiley, Hoboken, New Jersey, p 539

    Google Scholar 

  63. Bačić G, Spasojević I, Šećerov B, Mojović M (2008) Spin-trap** of oxygen free radicals in chemical and biological systems: new traps, radicals and possibilities. Spectrochim Acta Part A Mol Biomol Spectrosc 69(5):1354–1366

    Article  CAS  Google Scholar 

  64. Bonini MG, Miyamoto S, Di MP, Augusto O (2004) Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate. J Bio Chem 279(50):51836–51843

    Article  CAS  Google Scholar 

  65. Yunfu S, Pignatello JJ (1995) Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environ Sci Technol 29(8):2065–2072

    Article  Google Scholar 

  66. Mendive CB, Bredow T, Schneider J, Blesa M, Bahnemann D (2015) Oxalic acid at the TiO2/water interface under UV(A) illumination: surface reaction mechanisms. J Catal 322:60–72

    Article  CAS  Google Scholar 

  67. Lutze HV, Bircher S, Rapp I, Kerlin N, Bakkour R, Geisler M et al (2015) Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ Sci Technol 49(3):1673–1680

    Article  CAS  PubMed  Google Scholar 

  68. Rodríguez EM, Márquez G, Tena M, Álvarez PM, Beltrán FJ (2015) Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: the case of ofloxacin. Appl Catal B Environ 178:44–53

    Article  CAS  Google Scholar 

  69. Chen L, Zhao C, Dionysiou DD, O’Shea KE (2015) TiO2 photocatalytic degradation and detoxification of cylindrospermopsin. J Photochem Photobiol A Chem 307–308:115–122

    Article  CAS  Google Scholar 

  70. Rammohan G, Nadagouda M (2013) Green photocatalysis for degradation of organic contaminants: a review. Curr Org Chem 17(20):2338–2348

    Article  CAS  Google Scholar 

  71. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  72. Herrmann JM (2010) Fundamentals and misconceptions in photocatalysis. J Photochem Photobiol A Chem 216(2–3):85–93

    Article  CAS  Google Scholar 

  73. Herrmann JM, Lacroix M (2010) Environmental photocatalysis in action for green chemistry. Kinet Catal 51(6):793–800

    Article  CAS  Google Scholar 

  74. Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. J CO2 Utilization 26(November 2017):98–122

    Google Scholar 

  75. Ghadimkhani G, de Tacconi NR, Chanmanee W, Janakyab C, Rajeshwar K (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chem Commun 49(13):1297–1299

    Article  CAS  Google Scholar 

  76. Janáky C, Hursán D, Endrödi B, Chanmanee W, Roy D, Liu D et al (2016) Electro- and photoreduction of carbon dioxide: the twain shall meet at copper oxide/copper interfaces. ACS Energy Lett 1(2):332–338

    Article  CAS  Google Scholar 

  77. Zouzelka R, Rathousky J (2017) Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl Catal B Environ 217:466–476

    Article  CAS  Google Scholar 

  78. Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 170–171:90–123

    Article  CAS  Google Scholar 

  79. Boonen E, Beeldens A (2014) Recent photocatalytic applications for air purification in Belgium. Coatings 4(3):553–573

    Article  CAS  Google Scholar 

  80. Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P et al (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12(2):463–491

    Article  CAS  Google Scholar 

  81. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  CAS  Google Scholar 

  82. Zhao W, Wang Z, Shen X, Li J, Xu C, Gan Z (2012) Hydrogen generation via photoelectrocatalytic water splitting using a tungsten trioxide catalyst under visible light irradiation. Int J Hydrogen Energy 37(1):908–915

    Article  CAS  Google Scholar 

  83. Kundu S, Bramhaiah K, Bhattacharyya S (2020) Carbon-based nanomaterials: in the quest of alternative metal-free photocatalysts for solar water splitting. Nanoscale Advances

    Google Scholar 

  84. Janáky C, Rajeshwar K, De Tacconi NR, Chanmanee W, Huda MN (2013) Tungsten-based oxide semiconductors for solar hydrogen generation. Catal Today 199(1):53–64

    Article  CAS  Google Scholar 

  85. Valero P, Giannakis S, Mosteo R, Ormad MP, Pulgarin C (2017) Comparative effect of growth media on the monitoring of E. coli inactivation and regrowth after solar and photo-Fenton treatment. Chem Eng J 313:109–120

    Article  CAS  Google Scholar 

  86. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Article  CAS  PubMed  Google Scholar 

  87. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72(9):6111–6116

    Article  CAS  PubMed  Google Scholar 

  88. Vohra A, Goswami DY, Deshpande DA, Block SS (2006) Enhanced photocatalytic disinfection of indoor air. Appl Catal B Environ 64(1–2):57–65

    Article  CAS  Google Scholar 

  89. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    Article  CAS  PubMed  Google Scholar 

  90. Pulgarin C, Kiwi J, Nadtochenko V (2012) Mechanism of photocatalytic bacterial inactivation on TiO2 films involving cell-wall damage and lysis. Appl Catal B Environ 128:179–183

    Article  CAS  Google Scholar 

  91. Nadtochenko V, Denisov N, Sarkisov O, Gumy D, Pulgarin C, Kiwi J (2006) Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol A Chem 181(2–3):401–407

    Google Scholar 

  92. Veréb G, Manczinger L, Bozsó G, Sienkiewicz A, Forró L, Mogyorósi K et al (2013) Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B Environ 129:566–574

    Article  CAS  Google Scholar 

  93. Zhang Z, Gamage J (2010) Applications of photocatalytic disinfection. Int J Photoenergy

    Google Scholar 

  94. Gong M, **ao S, Yu X, Dong C, Ji J, Zhang D et al (2019) Research progress of photocatalytic sterilization over semiconductors. RSC Adv 9(34):19278–19284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rincón AG, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ 49(2):99–112

    Article  CAS  Google Scholar 

  96. Selli E (2002) Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye. Phys Chem Chem Phys 4(24):6123–6128

    Article  CAS  Google Scholar 

  97. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C Photochem Rev 7(4):127–144

    Article  CAS  Google Scholar 

  98. Sarria V, Kenfack S, Guillod O, Pulgarin C (2003) An innovative coupled solar-biological system at field pilot scale for the treatment of biorecalcitrant pollutants. J Photochem Photobiol A Chem 159(1):89–99

    Article  CAS  Google Scholar 

  99. Nascimbén Santos É, László Z, Hodúr C, Arthanareeswaran G, Veréb G (2020) Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review. Asia Pac J Chem Eng 15(5)

    Google Scholar 

  100. Zhang W, Ding L, Luo J, Jaffrin MY, Tang B (2016) Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review. Chem Eng J 302:446–458

    Article  CAS  Google Scholar 

  101. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281:144–164

    Article  CAS  Google Scholar 

  102. Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA et al (2015) Membrane technology enhancement in oil-water separation. A review. Desalination 357:197–207

    Article  CAS  Google Scholar 

  103. Liu Q, Huang S, Zhang Y, Zhao S (2018) Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development. J Colloid Interface Sci 515:109–118

    Article  CAS  PubMed  Google Scholar 

  104. Veréb G, Kálmán V, Gyulavári T, Kertész S, Beszédes S, Kovács G et al (2019) Advantages of TiO2/carbon nanotube modified photocatalytic membranes in the purification of oil-in-water emulsions. Water Sci Technol Water Supply 19(4):1167–1174

    Article  Google Scholar 

  105. Nascimben Santos E, Ágoston Á, Kertész S, Hodúr C, László Z, Pap Z et al (2020) Investigation of the applicability of TiO2, BiVO4, and WO3 nanomaterials for advanced photocatalytic membranes used for oil-in-water emulsion separation. Asia Pac J Chem Eng 15(5)

    Google Scholar 

  106. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  CAS  Google Scholar 

  107. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688

    Article  CAS  PubMed  Google Scholar 

  108. Silva SS, Magalhães F, Sansiviero MTC (2010) Nanocompósitos semicondutores ZnO/TiO2. Testes fotocatalíticos. Quim Nova 33(1):85–89

    Article  CAS  Google Scholar 

  109. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112(10):5520–5551

    Article  CAS  PubMed  Google Scholar 

  110. Pei D, Luan J (2012) Development of visible light-responsive sensitized photocatalysts. Int J Photoenergy 2012

    Google Scholar 

  111. Terenin A, Akimov I (2017) On the mechanism of the optical sensitization of semiconductors by organic dyes. Zeitschrift für Physikalische Chemie 217(1)

    Google Scholar 

  112. **g D, Guo L (2007) WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation. Catal Commun 8(5):795–799

    Article  CAS  Google Scholar 

  113. Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92(3):311–330

    Article  CAS  PubMed  Google Scholar 

  114. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389(1–2):1–8

    Article  CAS  Google Scholar 

  115. Veréb G, Ambrus Z, Pap Z, Mogyorósi K, Dombi A, Hernádi K (2014) Immobilization of crystallized photocatalysts on ceramic paper by titanium(IV) ethoxide and photocatalytic decomposition of phenol. React Kinet Mech Catal 113(1):293–303

    Article  CAS  Google Scholar 

  116. Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A Chem 104(1–3):1–12

    Article  CAS  Google Scholar 

  117. Serpone N, Salinaro A (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, Part I: suggested protocol (Technical report). Pure Appl Chem 71(2):303–20

    Google Scholar 

  118. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    Article  CAS  Google Scholar 

  119. Tokode O, Prabhu R, Lawton LA, Robertson PKJ (2015) UV LED sources for heterogeneous photocatalysis. Handb Environ Chem 35:159–179

    Google Scholar 

  120. Kuo WS, Ho PH (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45(1):77–83

    Article  CAS  PubMed  Google Scholar 

  121. Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400(1–3):206–212

    Article  CAS  Google Scholar 

  122. Eskandarian MR, Choi H, Fazli M, Rasoulifard MH (2016) Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem Eng J 300:414–422

    Article  CAS  Google Scholar 

  123. Gaya UI (2014) Heterogeneous photocatalysis using inorganic semiconductor solids. Heterogen Photocatalysis Using Inorg Semicond Solids 9789400777:1–213

    Google Scholar 

  124. Doucet N, Bocquillon F, Zahraa O, Bouchy M (2006) Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere 65(7):1188–1196

    Article  CAS  PubMed  Google Scholar 

  125. Preis S, Kachina A, Santiago NC, Kallas J (2005) The dependence on temperature of gas-phase photocatalytic oxidation of methyl tert-butyl ether and tert-butyl alcohol. Catal Today 101(3–4):353–358

    Article  CAS  Google Scholar 

  126. Emeline AV, Kuznetsov VN, Ryabchuk VK, Serpone N (2013) Heterogeneous photocatalysis: basic approaches and terminology. In: New and future developments in catalysis: solar photocatalysis. Elsevier B.V., pp 1–47

    Google Scholar 

  127. Ollis DF (2018) Kinetics of photocatalyzed reactions: five lessons learned. Frontiers Chem 6

    Google Scholar 

  128. Náfrádi M, Farkas L, Alapi T, Hernádi K, Kovács K, Wojnárovits L et al (2020) Application of coumarin and coumarin-3-carboxylic acid for the determination of hydroxyl radicals during different advanced oxidation processes. Radiat Phys Chem 1:170

    Google Scholar 

  129. Schneider J, Bahnemann DW (2013) Undesired role of sacrificial reagents in photocatalysis. J Phys Chem Lett 4(20):3479–3483

    Article  CAS  Google Scholar 

  130. Zhu M, Wang H, Keller AA, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487(1):375–380

    Article  CAS  PubMed  Google Scholar 

  131. Xue Y, Chang Q, Hu X, Cai J, Yang H (2020) A simple strategy for selective photocatalysis degradation of organic dyes through selective adsorption enrichment by using a complex film of CdS and carboxylmethyl starch. J Environ Manage 274

    Google Scholar 

  132. Yuan Q, Zhang D, Yu P, Sun R, Javed H, Wu G et al (2020) Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride. Environ Sci Technol 54(7):4621–4630

    Article  CAS  PubMed  Google Scholar 

  133. Li X, Bi W, Wang Z, Zhu W, Chu W, Wu C et al (2018) Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction. Nano Res 11(6):3362–3370

    Article  CAS  Google Scholar 

  134. Wang Q, Chen C, Zhao D, Wanhong M, Zhao J (2008) Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 24(14):7338–7345

    Article  CAS  PubMed  Google Scholar 

  135. Burns RA, Crittenden JC, Hand DW, Selzer VH, Sutter LL, Salman SR (1999) Effect of inorganic ions in heterogeneous photocatalysis of TCE. J Environ Eng 125(1):77–85

    Article  CAS  Google Scholar 

  136. Park H, Choi W (2004) Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J Phys Chem B 108(13):4086–4093

    Article  CAS  Google Scholar 

  137. Vohra MS, Kim S, Choi W (2003) Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J Photochem Photobiol A Chem 160(1–2):55–60

    Article  CAS  Google Scholar 

  138. Xu Y, Lv K, **ong Z, Leng W, Du W, Liu D et al (2007) Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF: new insight into the mechanism. J Phys Chem C 111(51):19024–19032

    Article  CAS  Google Scholar 

  139. Lv K, Lu CS (2008) Different effects of fluoride surface modification on the photocatalytic oxidation of phenol in anatase and rutile TiO2 suspensions. Chem Eng Technol 31(9):1272–1276

    Article  CAS  Google Scholar 

  140. Kudlek E, Dudziak M, Bohdziewicz J (2016) Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix. Water (Switz) 8(11)

    Google Scholar 

  141. Shand M, Anderson JA (2013) Aqueous phase photocatalytic nitrate destruction using titania based materials: routes to enhanced performance and prospects for visible light activation. Catal Sci Technol 3(4):879–899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the new national excellence program of the Ministry for Innovation and Technology (ÚNKP-20-5-SZTE 639) and the National Research, Development and Innovation Office (NKFIH, project number FK 132742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tünde Alapi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Náfrádi, M., Veréb, G., Firak, D.S., Alapi, T. (2022). Photocatalysis: Introduction, Mechanism, and Effective Parameters. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_1

Download citation

Publish with us

Policies and ethics

Navigation