Quaternion Based Free-Floating Space Manipulator Dynamics Modeling Using the Dynamically Equivalent Manipulator Approach

  • Conference paper
  • First Online:
Perspectives in Dynamical Systems III: Control and Stability (DSTA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 364))

Included in the following conference series:

  • 436 Accesses

Abstract

The paper presents a dynamics modeling method dedicated to free-floating spacecraft, e.g. manipulators, based on a modified Dynamically Equivalent Manipulator (DEM) method. DEM enables dynamics modeling of space manipulators by their suitable substitution by ground fixed manipulator models. This provides attractive modeling and control design tools. It enables carrying tests and experiments for space manipulators in Earth labs multiple times what contributes to mission cost and failure reductions. Originally, DEM is developed in Euler angles. The paper contribution is the modification of DEM to present space manipulators dynamics in quaternion parameterization. Quaternions do not share Euler angles’ drawbacks and they are computationally more efficient, but their implementation reveals challenges due to nonlinear relations for space manipulator angular velocities and a constraint equation they add to its dynamics. The motivation for DEM modification is to make dynamic models suitable for description of arbitrary space manipulator maneuvers and missions like debris removal, servicing, space mining and on-orbit docking and assemblies. The development of DEM in quaternion parameterization is illustrated by an example of space manipulator attitude dynamics and reorientation control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilde, M., Kwook, C.S., Grompone, A., Romano, M.: Equations of motion of free-floating spacecraft-manipulator systems: an engineer’s tutorial. Front. Robot. AI. (2018). https://doi.org/10.3389/frobt.2018.00041

  2. Sargent, D.G.: The impact of remote manipulator structural dynamics on shuttle on-orbit flight control. In: Proceedings of 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. AIAA, Seattle (1984)

    Google Scholar 

  3. Oda, M.: Experiences and lessons learned from the ETS-VII robot satellite. In: Proceedings of the 2000 IEEE Int. Conf. Robot. Automat, pp. 914–919. IEEE, San Francisco (2000)

    Google Scholar 

  4. Kennedy, F.G.: Orbital express: accomplishments and lessons learned. In: Proceedings of the AAS Guidance and control Conference, pp. 575–586. Univelt, Breckenridge (2008)

    Google Scholar 

  5. Moosavian, S.A.A., Papadopulos, E.: Free-flying robots in space: an overview of dynamics modeling, planning and control. Robotica. 25, 537–547 (2007). https://doi.org/10.1017/S0263574707003438

    Article  Google Scholar 

  6. STONEKING, Eric: Newton-Euler dynamic equations of motion for a multi-body spacecraft. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, p. 6441. Hilton Head, South Carolina (2007)

    Google Scholar 

  7. Ho, J.Y.L.: Direct path method for flexible multibody spacecraft dynamics. J. Spacecr. Rocket. 14, 102–110 (1977)

    Article  Google Scholar 

  8. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002

    Article  Google Scholar 

  9. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. In Proceedings of IEEE International Conference on Robotics and Automation. Raleigh, IEEE. (1987)

    Google Scholar 

  10. Liang, B., Xu, Y., Bergerman, M.: Map** a space manipulator to a dynamically equivalent manipulator. J. Dyn. Syst. Meas. Control. 120, 1–7 (1998)

    Article  Google Scholar 

  11. Yoshida, K., Umetani, Y.: Control of space manipulators with generalized Jacobian. In: Xu, Y., Kanade, T. (eds.) Space Robotics: Dynamics and Control, pp. 165–204. Springer, Boston (1993)

    Chapter  Google Scholar 

  12. Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotics systems. IEEE Trans. Robot. Autom. 9, 531–543 (1993)

    Article  Google Scholar 

  13. Yoshida, K.: Engineering test satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res. 22, 321–335 (2003). https://doi.org/10.1177/0278364903022005003

    Article  Google Scholar 

  14. Nikravesh, P.E., Kwon, O.K., Wehage, R.A.: Euler parameters in computational kinematics and dynamics. Part 2. J. Mech. Transm. Autom. Des. 107(3), 366–369 (1985)

    Article  Google Scholar 

  15. Jarzębowska, E., Kłak M.: Quaternion-Based Spacecraft Dynamic Modeling and Reorientation Control Using the Dynamically Equivalent Manipulator Approach. Advances in Spacecraft Attitude Control. IntechOpen. (2020)

    Google Scholar 

  16. Sola, J.: Quaternion kinematics for the error-state KF. In: Laboratoire d’Analyse et dArchitecture des Systemes-Centre national de la recherche scientifique (LAAS-CNRS). Tech. Rep, Toulouse (2012)

    Google Scholar 

  17. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Jarzębowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarzębowska, E., Kłak, M. (2021). Quaternion Based Free-Floating Space Manipulator Dynamics Modeling Using the Dynamically Equivalent Manipulator Approach. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems III: Control and Stability. DSTA 2019. Springer Proceedings in Mathematics & Statistics, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-77314-4_6

Download citation

Publish with us

Policies and ethics

Navigation