Study of Various Beamformers and Smart Antenna Adaptive Algorithms for Mobile Communication

  • Chapter
  • First Online:
Smart Antennas

Abstract

For the access of innovative and upgraded facilities, cellular and smartphone technology have evolved exponentially at an unprecedented and daunting pace during the last decade. This can be accomplished using multiple-input multiple-output and smart antenna technologies. One of the main quickly evolving areas of connectivity is the smart antenna technology, which allows achieving greater exposure by growing signal intensity only in the chosen direction. In this chapter, numerous beamforming techniques and beamforming algorithms for smart antennas are examined. The distinction is made with various beam-sha** algorithms with the spectrum parameters of the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noble, D.: The history of Land-mobile radio communications. IEEE Veh. Technol. 50(5), 1405–1414 (1962)

    Google Scholar 

  2. MacDonald, V.H.: The cellular concept. Bell Syst. Tech. J. 58(1), 15–43 (1979)

    Google Scholar 

  3. Kucar, A.D.: Mobile radio: an overview. IEEE Commun. Mag. 29(11), 72–85 (1991)

    Google Scholar 

  4. Ohmori, S., Yamao, Y., Nakakima, M.: Future generation of mobile communication based on broadband access technology. IEEE Commun. Mag. 38, 134–142 (2000)

    Google Scholar 

  5. Steer, M.: Beyond 3G. IEEE Microw. Mag. 8, 76–82 (2007)

    Google Scholar 

  6. Etemad, K.: Overview of mobile WiMAX technology and evolution. IEEE Commun. Mag. 46, 31–40 (2008)

    Google Scholar 

  7. Ahmadi, S.: An overview of next-generation mobile WiMAX technology. IEEE Commun. Mag. 47, 84–98 (2009)

    Google Scholar 

  8. Krenik, B.: 4G wireless technology: when will it happen? What does it offer? In: Proceedings of IEEE Asian Solid-State Circuits Conference, Fukuoka, Japan, pp. 141–144 (2008)

    Google Scholar 

  9. Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., Parkvall, S.: LTE: the evolution of mobile broadband. IEEE Commun. Mag. 47, 44–51 (2009)

    Google Scholar 

  10. Jiang, Z., Zhang, Y., Li, Y., Feng, Z.: A wideband dual-polarized slot antenna. IEEE Antenna Wirel. Propag. Lett. 12, 1010–1013 (2013)

    Google Scholar 

  11. Malik, P.K., Wadhwa, D.S., Khinda, J.S.: A Survey of Device to Device and Cooperative Communication for the Future Cellular Networks. Int. J. Wireless Inf. Networks. 27, 411–432 (2020). https://doi.org/10.1007/s10776-020-00482-8

  12. Danasegaran, S.K., Britto, E.C., Xavier, S.C.: Exploration of Trigonal Patch Antenna Characteristics with the Impact of 2D Photonic Crystal of Various Air Hole Shapes. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-09071-8

  13. Zheng, L., Tse, D.: Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels. IEEE Trans. Inf. Theory. 49, 1073–1096 (2003)

    MATH  Google Scholar 

  14. Paulraj, A.J., Kailath, T.: Increasing Capacity in Wireless Broadcast Systems Using Distributed Transmission/Directional Reception. U.S. Patent, No. 5, 345, 599 (1994)

    Google Scholar 

  15. Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Tech. J. 1(2), 41–59 (1996)

    Google Scholar 

  16. Lim, A.W.C., Lau, V.K.N.: On the fundamental tradeoff of spatial diversity and spatial multiplexing of MIMO links with imperfect CSIT. In: IEEE International Symposium Information Theory, ISIT’06, Seattle, USA, pp. 2704–2708 (2006)

    Google Scholar 

  17. Winters, J.H.: Smart antennas for wireless systems. IEEE Pers. Commun. 5(1), 23–27 (1998)

    Google Scholar 

  18. Chryssomallis, M.: Smart antennas. IEEE Antennas Propag. Mag. 42(3), 129–136 (2000)

    Google Scholar 

  19. Alexiou, A., Haardt, M.: Smart antenna technologies for future wireless systems: trends and challenges. IEEE Commun. Mag. 42(9), 90–97 (2004)

    Google Scholar 

  20. Frerking, M., Austin, M.: Bell South/cellwave smart antenna field trial and analysis of a switched beam system. In: Second Workshop on Smart Antennas in Wireless Mobile Communications. Stanford University, Stanford (1995)

    Google Scholar 

  21. Douglas, O.R., Rendink, M., Kavanagh, M.: Cellular system improvement through the use of switched multi-beam antenna systems. In: Third Workshop on Smart Antennas in Wireless Mobile Systems. Stanford University, Stanford (1996)

    Google Scholar 

  22. Denidni, T.A., Libar, T.E.: Wide band four-port butler matrix for switched multibeam antenna arrays. In: 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, pp. 2461–2464 (2003)

    Google Scholar 

  23. Siachalou, E., Vafiadis, E., Goudos, S.S., Samaras, T., Koukourlis, C.S., Panas, S.: On the design of switched-beam wideband base stations. IEEE Antennas Propag. Mag. 46(1), 158–167 (2004 February). https://doi.org/10.1109/MAP.2004.1296180

    Article  Google Scholar 

  24. Swales, S.C., Beach, M.A., Edwards, D.J.: Multi-beam adaptive base-station antennas for cellular land mobile radio systems. In: IEEE 39th Vehicular Technology Conference, San Francisco, CA, USA, vol. 1, pp. 341–348 (1989). https://doi.org/10.1109/VETEC.1989.40099

    Chapter  Google Scholar 

  25. Swales, S.C., Beach, M.A., Edwards, D.J., McGeehan, J.P.: The performance enhancement of multibeam adaptive base-station antennas for cellular land mobile radio systems. IEEE Trans. Veh. Technol. 29(1), 56–67 (1990)

    Google Scholar 

  26. Tsoulos, G.V.: Smart antennas for mobile communication systems: benefits and challenges. J. Electron. Commun. Eng. 11(2), 84–94 (1999)

    Google Scholar 

  27. Stark, L.: Microwave theory of phased array antennas-a review. Proc. IEEE. 62, 1661–1701 (1974)

    Google Scholar 

  28. White, J.F.: Phased array technology workshop, N.R.L., Washington, DC. J. Microw. 24(2), 16–28 (1981)

    Google Scholar 

  29. Fenn, A.J.: Theoretical and experimental study of monopole phased array antennas. IEEE Trans. Antennas Propag. 34, 1118–1126 (1985)

    Google Scholar 

  30. Mailloux, R.J.: Phased array theory and technology. Proc. IEEE. 70(3), 246–291 (1982)

    Google Scholar 

  31. Liu, Y., Wichman, A., Isaac, B., Kalkavage, J., Adles, E., Clark, T., Klamkin, J.: Ring resonator based integrated optical beam forming network with true time delay for mmW communications. In: International Microwave Symposium (IMS), IEEE MTT-S, pp. 1024–1030 (2017)

    Google Scholar 

  32. Liu, Y., Wichman, A.R., Isaac, B., Kalkavage, J., Adles, E.J., Clark, T.R., Klamkin, J.: Ultra-low-loss silicon nitride optical beamforming network forwidebandwireless applications. J. Sel. Top. Quantum Electron. 24, 8300410 (2018)

    Google Scholar 

  33. Ajikota, J.S., Mcfarland, J.L.: Beam-forming feeds. In: Antenna Handbook, pp. 19-1–19-122. Springer, Boston (1988)

    Google Scholar 

  34. Tanaka, T., Miura, R., Chiba, I., Karasawa, Y.: An ASIC implementation scheme to realize a beam space CMA adaptive array antenna. IEICE Trans. Commun. E78-B(11), 1467–1473 (1995)

    Google Scholar 

  35. Hazard, C.R., Lockwood, G.R.: Develo** a high speed beamformer using the TMS320C6201 digital signal processor. In: IEEE Ultrasonics Symposium, pp. 1755–1758 (2000)

    Google Scholar 

  36. Britto, E.C., Danasegaran, S.K., Johnson, W.: Design of slotted patch antenna based on photonic crystal for wireless communication. Int J Commun Syst. 34:e4662 (2021). https://doi.org/10.1002/dac.4662

  37. Zaglanikis, C.D., Benjamin, R., Seeds, A.J.: Optical beam-former for microwave phased array antennas. In: Microwave Optoelectronics, IEE Colloquium, pp. 16/1–16/6 (1990)

    Google Scholar 

  38. Chen, M.Y., Subaraman, H., Chen, R.T.: Photonic crystal fiber beam former for multiple X-band phased-array antenna transmission. IEEE Photon. Technol. Lett. 2(5), 375–377 (2008)

    Google Scholar 

  39. Zhuang, L., Roeloffzen, C.G.H., Heideman, R.G., Borreman, A., Meijerink, A., van Etten, W.: Ring resonator-based single-chip 1× 8 optical beam forming network in LPCVD waveguide technology. In: Proceedings of 11th IEEE/LEOS Symposium, Benelux, Eindhoven, Netherlands, pp. 45–48 (2006)

    Google Scholar 

  40. Zhuang, L., Meijerink, A., Roeloffzen, C.G.H., Marpaung, D.A.I., Peña, H.J., van Etten, W., Heideman, G., Leinse, A., Hoekman, M.: Phased array receive antenna steering using a ring resonator-based optical beam forming network and filter-based optical SSB-SC modulation. In: Proceedings of the International Topical Meeting on Microwave Photonics, Victoria, BC Canada, pp. 88–91 (2007)

    Google Scholar 

  41. Zhuang, L., Roeloffzen, C.G.H., Heideman, R.G., Borreman, A., Meijerink, A., van Etten, W.: Single-chip ring resonator-based 1 × 8 optical beam forming network in CMOS-compatible waveguide technology. IEEE Photon. Technol. Lett. 15(15), 1130–1132 (2007)

    Google Scholar 

  42. Schippers, H., Verpoorte, J., Jorna, P., Hulzinga, A., Meijerink, A., Roeloffzen, C.G.H., Zhuang, L., Marpaung, D.A.I., van Etten, W., Heideman, R.G., Leinse, A., Borreman, A., Hoekman, M.: Broadband conformal phased array with optical beamforming for airborne satellite communication. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, US, pp. 1–17 (2008)

    Google Scholar 

  43. Schippers, H., Verpoorte, J., Jorna, P., Hulzinga, A., Meijerink, A., Roeloffzen, C.G.H., Zhuang, L.I., Marpaung, D.A., van Etten, W., Heideman, R.G., Leinse, A., Borreman, A., Hoekman, M.W.: Broadband optical beamforming for airborne satellite communication. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, US, pp. 1–19 (2009)

    Google Scholar 

  44. Elizabeth, C.B., Kabilan, A.P., Susan, C.X.: An optical beam former for smart antennas in mobile broadband communication. Int. J. Mob. Commun. Inder Sci. Publ. 7(6), 683–694 (2009)

    Google Scholar 

  45. Caroline, B.E., Xavier, S.C., Kabilan, A.P., William, J.: Performance analysis and comparison of optical signal processing beamforming networks: a survey. Springer J. Photon. Netw. Commun. 37(1), 38–52 (2018)

    Google Scholar 

  46. Tiwari, P., Malik, P.K.: “Design of UWB Antenna for the 5G Mobile Communication Applications: A Review,” International Conference on Computation, Automation and Knowledge Management (ICCAKM), pp. 24–30 (2020). https://doi.org/10.1109/ICCAKM46823.2020.9051556

  47. Granieri, S., Jaeger, M., Siahmakoun, A.: Multiple- beam fiber-optic beamformer with binary array of delay lines. J. Lightwave Technol. 21(12), 6262–6264 (2003)

    Google Scholar 

  48. Jofre, L., Stoltidou, C., Blanch, S., Mengual, T., Vidal, B., Martí, J., McKenzie, I., del Cura, J.M.: Optically beamformed wideband array performance. IEEE Trans. Antenna Wave Propag. 56(6), 1594–1603 (2008)

    Google Scholar 

  49. Wang, Y., Sun, H., Khalil, M., Dong, W., Gasulla, I., Capmany, J., Chen, L.R.: “On-chip optical true time delay lines based on subwavelength grating waveguides,” Opt. Lett. 46(6), 1405–1408 (2021)

    Google Scholar 

  50. Duarte, V.C., Prata, J.G., Ribeiro, C., Nogueira, R.N., Winzer, G., Zimmermann, L., Walker, R., Clements, S., Filipowicz, M., Napierała, M., Nasiłowski, T., Crabb, J., Stampoulidis, L., Anzalchi, J., Drummond, M.V.: Integrated photonic true-time delay beamformer for a ka-band phased array antenna receiver. In: Optical Fiber Communication Conference, OSA Technical Digest (online), Optical Society of America. San Diego, California United States. pp. 1–3 (2018). ISBN: 978-1-943580-38-5

    Google Scholar 

  51. Trinidad, A.M., Tessema, N., Cao, Z., van Zantvoort, J.H.C., Dubok, A., Al-Rawi, A.N.H., Tangdiongga, E., Smolders, A.B., Koonen, A.M.J.: Optical beamformer for K-band smart antenna systems. In: Optical Fiber Communication Conference OSA Technical Digest, M4 J.2, pp. 1–3 (2018)

    Google Scholar 

  52. Zhang, X., Zhao, M., Jiao, Y., Cao, Z., Koonen, A.M.J.: Integrated wavelength-tuned optical mm-wave beamformer with doubled delay resolution. J. Lightwave Technol. 38(8), 2353–2359 (2020, April 15). https://doi.org/10.1109/JLT.2020.2972012

    Article  Google Scholar 

  53. Mihret, F., Kumar, P., Srinivas, T.: Hybrid photonic beamforming for 5G downlink millimeter wave MIMO communication. In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, pp. 1–6 (2020). https://doi.org/10.1109/CONECCT50063.2020.9198561

    Chapter  Google Scholar 

  54. Riza, N.A.: Liquid crystal-based optical time delay units for phased array antennas. J. Lightwave Technol. 12(8), 1440–1447 (1994)

    Google Scholar 

  55. Jung, B.M., Yao, J.: A two-dimensional optical true time-delay beamformer consisting of a fiber bragg grating prism and switch-based fiber-optic delay lines. IEEE Photon. Technol. Lett. 21(10), 627–629 (2009)

    Google Scholar 

  56. Ji, Y., Inagaki, K., Miura, R., Karasawa, Y.: Beam formation by using optical signal processing techniques. Antennas Propag. Soc. Int. Symp. 2, 739–742 (1997)

    Google Scholar 

  57. Shibata, O., Inagaki, K., Karasawa, Y., Mizuguchi, Y.: Spatial optical beam-forming network for receiving – mode multibeam array antenna – proposal and experiment. IEEE Trans. Microw. Theory Technol. 50(5), 1425–1430 (2002)

    Google Scholar 

  58. Elizabeth, C.B., Kabilan, A.P., Susan, C.X.: Optical MEMS based signal processor for smart antenna in Mobile broad-band communications. Int. J. Microw. Opt. Technol. ISRAMT Publ. 4(1), 52–59 (2009 January)

    Google Scholar 

  59. Tulchinsky, D.A., Mathews, P.J.: Ultrawide-band fiber optic control of a millimeter wave transmit beamformer. IEEE Microw. Theory Tech. 49(7), 1248–1253 (2003)

    Google Scholar 

  60. Trinidad, M., Cao, Z., van Zantvoort, J.H.C., Tangdiongga, E., Koonen, A.M.J.: Broadband and continuous beamformer based on switched delay lines cascaded by optical ring resonator. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, pp. 1–3 (2019)

    Google Scholar 

  61. Khalaf, M., El-Daly, A.B.M., Hamed, H.F.A.: Different adaptive beamforming algorithms for performance investigation of smart antenna system. In: 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, pp. 1–6 (2016). https://doi.org/10.1109/SOFTCOM.2016.7772134

    Chapter  Google Scholar 

  62. Kuhwald, T., Boche, H.: A new optimum constrained beam forming algorithm for future mobile communication systems based on CDMA. In: Proceedings ACTS Mobile Communication Summit, pp. 963–968 (1999)

    Google Scholar 

  63. Godara, L.C.: Application of antenna arrays to mobile communications, part II: beam-forming and direction of arrival considerations. Proc. IEEE. 85, 1193–1245 (1997b)

    Google Scholar 

  64. Kabilan, A.P., Meena, K.: Performance comparison of a modified LMS algorithm in digital beam forming for high speed networks. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 428–433 (2007)

    Google Scholar 

  65. Shaukat, S.F., Hassan, M., Farooq, R., Saeed, H.U., Saleem, Z.: Sequential studies of beamforming algorithms for smart antenna systems. J. World Appl. Sci. 6(6), 754–758 (2009)

    Google Scholar 

  66. Imtiaj, S.K., Misra, I.S., Bhattacharya, S.: Revisiting Smart Antenna Array Design with Multiple Interferers Using Basic Adaptive Beamforming Algorithms: Comparative Performance Study with Testbed Results (Accepted: 26 August 2020). wileyonlinelibrary.com/journal

  67. Panda, D.K.: DRLMS adaptive beamforming algorithm for smart antenna system. Int. J. Appl. Eng. Res. 13(8), 5585–5588 (2018) ISSN 0973-4562. © Research India Publications. http://www.ripublication.com

    Google Scholar 

  68. Ismail, M.M., Bashar, B.S., Elias, B.B.Q., Pyliavskyi, V.V.: Study and analysis of an adaptive beamforming for smart antenna using LMS algorithm. Telecommun. Radio Eng. 79(X), 1–14 (2020) 0040-2508

    Google Scholar 

  69. Samantaray, B., Kumar Das, K., Sekhar Roy, J.: Performance of smart antenna in cellular network using variable step-size algorithms. Int. J. Microw. Opt. Technol. 15(2), 179 (2020 March)

    Google Scholar 

  70. Kaur, S., Kumar, N., Dubey, S.: Investigation of adaptive beam-forming algorithms for smart antennas system. IOP Conf. Ser. Mater. Sci. Eng. 1033, 012015. International Conference on Integrated Interdisciplinary Innovations in Engineering (ICIIIE 2020) 28–30 August 2020, Panjab University, India, 1033 (2020)

    Google Scholar 

  71. Bachar, A., ElHassan, R.A., Srar Ghattas Akkad, J.A., Mansour, A.: A pipelined reduced complexity two-stages parallel LMS structure for adaptive beamforming. IEEE Trans. Circuits Syst. 50(6), 5079

    Google Scholar 

Download references

Acknowledgment

We are gratefully thankful to the reviewers for their critical comments and suggestions to improve the quality of the book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Britto, E.C., Danasegaran, S.K., Xavier, S.C., Sridevi, A., Batcha, A.R.S. (2022). Study of Various Beamformers and Smart Antenna Adaptive Algorithms for Mobile Communication. In: Malik, P.K., Lu, J., Madhav, B.T.P., Kalkhambkar, G., Amit, S. (eds) Smart Antennas. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-76636-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76636-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76635-1

  • Online ISBN: 978-3-030-76636-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation