Evolutionary and Developmental Perspectives on the Origin and Diversification of the Vertebrate Cerebellum

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1046 Accesses

Abstract

An anteroposterior arrangement of brain compartments from the telencephalon to the rhombencephalon is observed in all extant vertebrates. Moreover, the stereotyped framework of longitudinal and commissural tracts is also conserved among vertebrates. In contrast, the size and morphology of brain regions have diversified into a variety of forms. Thus, vertebrate brains are thought to have inherited their basic organization during evolution, while the size and functions of brain subregions may have been modified in vertebrate lineages. In particular, the vertebrate cerebellum, which serves as the integrative center for motor coordination, shows remarkable morphological diversity. In vertebrates, the human cerebellum not only functions as a center for motor coordination and balance but is also involved in various cognitive functions. Conversely, the cerebella of amphibians and reptiles are small and rudimentary. Thus, the cerebellum seems to have evolved independently between species in relation to the evolution of sensory perception and motor regulation.

In general, the primordium of the vertebrate cerebellum appears in the caudal part of the midbrain/hindbrain boundary, called the isthmic organizer (IsO), which is marked by the specific expression of several transcription factors and signaling molecules. Recent studies have shown that the IsO is present in several vertebrate lineages, including cyclostomes, that bifurcated from other vertebrates in the early evolutionary period. Furthermore, the molecular mechanisms underlying the differentiation of excitatory and inhibitory neurons in the cerebellum or cerebellum-like regions are also conserved between lineages. These results indicate that the basic mechanism underlying the specification of the cerebellum may have been established in the last common ancestor of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso, P. D., Milner, A. C., Ketcham, R. A., Cookson, M. J., & Rowe, T. B. (2004). The avian nature of the brain and inner ear of archaeopteryx. Nature, 430, 666–669.

    Article  CAS  PubMed  Google Scholar 

  • Aspden, J. W., Armstrong, C. L., Gutierrez-Ibanez, C. I., Hawkes, R., Iwaniuk, A. N., Kohl, T., Graham, D. J., & Wylie, D. R. (2015). Zebrin II / aldolase C expression in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). PLoS One, 10, e0117539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell, C. C., & Szabo, T. (1986). Electroreception in mormyrid fish: Central anatomy. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. Wiley.

    Google Scholar 

  • Bertrand, S., Camasses, A., Somorjai, I., Belgacem, M. R., Chabrol, O., Escande, M. L., Pontarotti, P., & Escriva, H. (2011). Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 9160–9165.

    Google Scholar 

  • Braun, C. B. (1998). Schreiner organs: A new craniate chemosensory modality in hagfishes. The Journal of Comparative Neurology, 392, 135–163.

    Article  CAS  PubMed  Google Scholar 

  • Broccoli, V., Boncinelli, E., & Wurst, W. (1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature, 401, 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy: Evolution and adaptation (2nd ed.). Wiley-Interscience.

    Book  Google Scholar 

  • Butts, T., Green, M. J., & Wingate, R. J. (2014). Development of the cerebellum: Simple steps to make a ‘little brain’. Development, 141, 4031–4041.

    Article  CAS  PubMed  Google Scholar 

  • Castro, L. F., Rasmussen, S. L., Holland, P. W., Holland, N. D., & Holland, L. Z. (2006). A Gbx homeobox gene in amphioxus: Insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Developmental Biology, 295, 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Chaplin, N., Tendeng, C., & Wingate, R. J. (2010). Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. The Journal of Neuroscience, 30, 3048–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D., Blom, H., Sanchez, S., Tafforeau, P., & Ahlberg, P. E. (2016). The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature, 539, 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Choo, B., Zhu, M., Zhao, W., Jia, L., & Zhu, Y. (2014). The largest Silurian vertebrate and its palaeoecological implications. Scientific Reports, 4, 5242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement, A. M., & Ahlberg, P. E. (2014). The first virtual cranial endocast of a lungfish (sarcopterygii: dipnoi). PLoS One, 9, e113898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford, N. G., Faircloth, B. C., McCormack, J. E., Brumfield, R. T., Winker, K., & Glenn, T. C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8, 783–786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoghue, P. C., & Benton, M. J. (2007). Rocks and clocks: Calibrating the Tree of Life using fossils and molecules. Trends in Ecology & Evolution, 22, 424–431.

    Article  Google Scholar 

  • Donoghue, P. C., & Keating, J. N. (2014). Early vertebrate evolution. Paléo, 57, 879–893.

    Google Scholar 

  • Donoghue, P. C., Forey, P. L., & Aldridge, R. J. (2000). Conodont affinity and chordate phylogeny. Biological Reviews of the Cambridge Philosophical Society, 75, 191–251.

    Article  CAS  PubMed  Google Scholar 

  • Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P., & Ahlberg, P. E. (2014). A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature, 507, 500–503.

    Article  CAS  PubMed  Google Scholar 

  • Engelkamp, D., Rashbass, P., Seawright, A., & van Heyningen, V. (1999). Role of Pax6 in development of the cerebellar system. Development, 126, 3585–3596.

    Article  CAS  PubMed  Google Scholar 

  • Finger, T. E. (2009). The evolution of taste systems. In J. H. Kaas (Ed.), Evolutinary neuroscience (pp. 459–478). Academic Press.

    Google Scholar 

  • Gai, Z., Donoghue, P. C., Zhu, M., Janvier, P., & Stampanoni, M. (2011). Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature, 476, 324–327.

    Article  CAS  PubMed  Google Scholar 

  • Goudemand, N., Orchard, M. J., Urdy, S., Bucher, H., & Tafforeau, P. (2011). Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 108, 8720–8724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, R. E., Braun, E. L., Armstrong, J., Earl, D., Nguyen, N., Hickey, G., Vandewege, M. W., St John, J. A., et al. (2014). Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 346, 1254449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada, H., Sato, T., & Nakamura, H. (2016). Fgf8 signaling for development of the midbrain and hindbrain. Development, Growth & Differentiation, 58, 437–445.

    Article  CAS  Google Scholar 

  • Heimberg, A. M., Cowper-Sal-lari, R., Semon, M., Donoghue, P. C., & Peterson, K. J. (2010). microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 107, 19379–19383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi, M., Matsuda, K., Takeuchi, M., Shimizu, T., & Murakami, Y. (2017). Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Development, Growth & Differentiation, 59, 228–243.

    Article  Google Scholar 

  • Hidalgo-Sanchez, M., Millet, S., Simeone, A., & Alvarado-Mallart, R. M. (1999). Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mechanisms of Development, 81, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, S., Sugahara, F., Pascual-Anaya, J., Takagi, W., Oisi, Y., & Kuratani, S. (2019). Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals. Nature, 565, 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Imura, K., Yamamoto, N., Sawai, N., Yoshimoto, M., Yang, C. Y., Xue, H. G., & Ito, H. (2003). Topographical organization of an indirect telencephalo-cerebellar pathway through the nucleus paracommissuralis in a teleost, Oreochromis niloticus. Brain, Behavior and Evolution, 61, 70–90.

    Article  PubMed  Google Scholar 

  • Imura, K., Yamamoto, N., Yoshimoto, M., Endo, M., Funakoshi, K., & Ito, H. (2017). Fiber connections of the caudal corpus cerebelli, with special reference to the intrinsic circuitry, in a teleost (Oreochromis niloticus). Brain, Behavior and Evolution, 89, 15–32.

    Article  PubMed  Google Scholar 

  • Janvier, P. (2002). Early vertebrates. Oxford University Press.

    Google Scholar 

  • Johnston, J. B. (1902). The brain of petromyzon. The Journal of Comparative Neurology, 12, 1–82.

    Article  Google Scholar 

  • Jorqensen, J. M., Shichiri, M., & Genese, F. A. (1998). Morphology of the hagfish inner ear. Acta Zoologica, 79, 251–256.

    Article  Google Scholar 

  • Kani, S., Bae, Y. K., Shimizu, T., Tanabe, K., Satou, C., Parsons, M. J., Scott, E., Higashijima, S., et al. (2010). Proneural gene-linked neurogenesis in zebrafish cerebellum. Developmental Biology, 343, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Katahira, T., Sato, T., Sugiyama, S., Okafuji, T., Araki, I., Funahashi, J., & Nakamura, H. (2000). Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mechanisms of Development, 91, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Kozmik, Z., Holland, N. D., Kalousova, A., Paces, J., Schubert, M., & Holland, L. Z. (1999). Characterization of an amphioxus paired box gene, AmphiPax2/5/8: Developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development, 126, 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  • Kuraku, S., & Kuratani, S. (2006). Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoological Science, 23, 1053–1064.

    Article  CAS  PubMed  Google Scholar 

  • Lannoo, M. J., & Hawkes, R. (1997). A search for primitive Purkinje cells: Zebrin II expression in sea lampreys (Petromyzon marinus). Neuroscience Letters, 237, 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Larsell, O. (1947). The cerebellum of myxinoids and petromyzonts including developmental stages in the lampreys. The Journal of Comparative Neurology, 86, 395–445.

    Article  CAS  PubMed  Google Scholar 

  • Larsell, O. (1967). The comparative anatomy and histology of the cerebellum. University of Minnesota Press.

    Google Scholar 

  • Luo, Z. X., Crompton, A. W., & Sun, A. L. (2001). A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science, 292, 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  • Mallatt, J., & Sullivan, J. (1998). 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Molecular Biology Evolution, 15, 1706–1718.

    Google Scholar 

  • Meek, J., Yang, J. Y., Han, V. Z., & Bell, C. C. (2008). Morphological analysis of the mormyrid cerebellum using immunohistochemistry, with emphasis on the unusual neuronal organization of the valvula. The Journal of Comparative Neurology, 510, 396–421.

    Google Scholar 

  • Meulemans, D., & Bronner-Fraser, M. (2007). Insights from amphioxus into the evolution of vertebrate cartilage. PLoS One, 2, e787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millet, S., Bloch-Gallego, E., Simeone, A., & Alvarado-Mallart, R. M. (1996). The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: A study using in situ hybridisation and chick/quail homotopic grafts. Development, 122, 3785–3797.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery, J. C., Bodznick, D., & Yopak, K. E. (2012). The cerebellum and cerebellum-like structures of cartilaginous fishes. Brain, Behavior and Evolution, 80, 152–165.

    Article  PubMed  Google Scholar 

  • Morris, S. C., & Caron, J. B. (2014). A primitive fish from the Cambrian of North America. Nature, 512, 419–422.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, T., & Morita, Y. (1987). Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. The Journal of Comparative Neurology, 256, 607–623.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, Y., Ogasawara, M., Sugahara, F., Hirano, S., Satoh, N., & Kuratani, S. (2001). Identification and expression of the lamprey Pax6 gene: Evolutionary origin of the segmented brain of vertebrates. Development, 128, 3521–3531.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J. S. (2016). Fishes of the world Fifth edition. Wiley.

    Book  Google Scholar 

  • Nieuwenhuys, R. (1967). Comparative anatomy of the cerebellum. Progress in Brain Research, 25, 1–93.

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys, R. (1998). The central nervous system of vertebrates (Nieuwenhuys, R., TenDonkelaar, H. J., Nicholson, C., ed.), Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Nieuwenhuys, R., & Nicholson, C. (1967). Cerebellum of mormyrids. Nature, 215, 764–765.

    Article  CAS  PubMed  Google Scholar 

  • Northmore, D. P. (2017). Holding visual attention for 400millionyears: A model of tectum and torus longitudinalis in teleost fishes. Vision Research, 131, 44–56.

    Article  PubMed  Google Scholar 

  • Oisi, Y., Ota, K. G., Kuraku, S., Fujimoto, S., & Kuratani, S. (2013). Craniofacial development of hagfishes and the evolution of vertebrates. Nature, 493, 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Ota, K. G., & Kuratani, S. (2006). The history of scientific endeavors towards understanding hagfish embryology. Zoological Science, 23, 403–418.

    Article  PubMed  Google Scholar 

  • Ota, K. G., Kuraku, S., & Kuratani, S. (2007). Hagfish embryology with reference to the evolution of the neural crest. Nature, 446, 672–675.

    Article  CAS  PubMed  Google Scholar 

  • Ota, K. G., Fujimoto, S., Oisi, Y., & Kuratani, S. (2011). Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nature Communications, 2, 373.

    Article  PubMed  CAS  Google Scholar 

  • Pani, A. M., Mullarkey, E. E., Aronowicz, J., Assimacopoulos, S., Grove, E. A., & Lowe, C. J. (2012). Ancient deuterostome origins of vertebrate brain signalling centres. Nature, 483, 289–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, H. J., Bronner, M. E., & Krumlauf, R. (2014). A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature, 514(7523), 490–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Anaya, J., Sato, I., Sugahara, F., Higuchi, S., Paps, J., Ren, Y., Takagi, W., Ruiz-Villalba, A., et al. (2018). Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nature Ecology & Evolution, 2, 859–866.

    Article  Google Scholar 

  • Pose-Mendez, S., Candal, E., Adrio, F., & Rodriguez-Moldes, I. (2014). Development of the cerebellar afferent system in the shark Scyliorhinus canicula: Insights into the basal organization of precerebellar nuclei in gnathostomes. The Journal of Comparative Neurology, 522, 131–168.

    Article  PubMed  Google Scholar 

  • Reifers, F., Bohli, H., Walsh, E. C., Crossley, P. H., Stainier, D. Y., & Brand, M. (1998). Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development, 125, 2381–2395.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, T. B., Macrini, T. E., & Luo, Z. X. (2011). Fossil evidence on origin of the mammalian brain. Science, 332, 955–957.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Araki, I., & Nakamura, H. (2001). Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development, 128, 2461–2469.

    Article  CAS  PubMed  Google Scholar 

  • Shu, D. G., Morris, S. C., Han, J., Zhang, Z. F., Yasui, K., Janvier, P., Chen, L., Zhang, X. L., et al. (2003). Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 421, 526–529.

    Article  CAS  PubMed  Google Scholar 

  • Stencio, E. A. (1927). “The Dountonian and Devonian vertebrates of Spitsbergen. I, Family Cephalaspidae”, (I kommisjon hos J. Dybwad, 1927).

    Google Scholar 

  • Sugahara, F., Aota, S., Kuraku, S., Murakami, Y., Takio-Ogawa, Y., Hirano, S., & Kuratani, S. (2011). Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: Evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development, 138, 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, F., Pascual-Anaya, J., Oisi, Y., Kuraku, S., Aota, S., Adachi, N., Takagi, W., Hirai, T., et al. (2016). Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature, 531, 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T., & Holland, P. W. (2004). Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development, 131, 3285–3294.

    Article  CAS  PubMed  Google Scholar 

  • Takio, Y., Kuraku, S., Murakami, Y., Pasqualetti, M., Rijli, F. M., Narita, Y., Kuratani, S., & Kusakabe, R. (2007). Hox gene expression patterns in Lethenteron japonicum embryos--insights into the evolution of the vertebrate Hox code. Developmental Biology, 308, 606–620.

    Article  CAS  PubMed  Google Scholar 

  • Tzika, A. C., Ullate-Agote, A., Grbic, D., & Milinkovitch, M. C. (2015). Reptilian transcriptomes v2.0: An extensive resource for sauropsida genomics and transcriptomics. Genome Biology and Evolution, 7, 1827–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada, S., Tokuoka, M., Shoguchi, E., Kobayashi, K., Di Gregorio, A., Spagnuolo, A., Branno, M., Kohara, Y., et al. (2003). A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Development Genes and Evolution, 213, 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, S. A., Iwaniuk, A. N., Knoll, M. A., Bourdon, E., Barrett, P. M., Milner, A. C., Nudds, R. L., Abel, R. L., et al. (2013). Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS One, 8, e67176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, C., Paxinos, G., & Puelles, L. (2011). The mouse nervous system. Academic Press.

    Google Scholar 

  • Wicht, H. (1996). The brains of lampreys and hagfishes: Characteristics, characters, and comparisons. Brain, Behavior and Evolution, 48, 248–261.

    Article  CAS  PubMed  Google Scholar 

  • Wingate, R. J., & Hatten, M. E. (1999). The role of the rhombic lip in avian cerebellum development. Development, 126, 4395–4404.

    Article  CAS  PubMed  Google Scholar 

  • Witmer, L. M., Chatterjee, S., Franzosa, J., & Rowe, T. (2003). Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature, 425, 950–953.

    Article  CAS  PubMed  Google Scholar 

  • Witton, M. P. (2013). Pterosaurs: Natural history, evolution, anatomy. Princeton University Press.

    Book  Google Scholar 

  • Yamasaki, T., Kawaji, K., Ono, K., Bito, H., Hirano, T., Osumi, N., & Kengaku, M. (2001). Pax6 regulates granule cell polarization during parallel fiber formation in the develo** cerebellum. Development, 128, 3133–3144.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Minor, P. J., Zhao, Y. T., Jeong, Y., Pani, A. M., King, A. N., Symmons, O., Gan, L., et al. (2016). Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nature Genetics, 48, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yopak, K. E., Pakan, J. M. P., & Wylie, D. (2017). The cerebellum of nonmammalian vertebrates. In J. H. Kaas (Ed.), Evolution of nervous systems (2nd ed.). Academic Press.

    Google Scholar 

  • Zhu, M., Yu, X., Ahlberg, P. E., Choo, B., Lu, J., Qiao, T., Qu, Q., Zhao, W., et al. (2013). A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 502, 188–193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Makiko Fukui for technical support and valuable discussions. We thank all past and present members and collaborators of the YM and FS laboratories for support and constructive discussions. This project has been supported by RIKEN, Kobe, Japan, Ehime University (Research unit) and the Japan Society for the Promotion of Science (JSPS; grant number 20K06892 to YM, and grant number 19K06794 to FS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murakami, Y., Sugahara, F. (2021). Evolutionary and Developmental Perspectives on the Origin and Diversification of the Vertebrate Cerebellum. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_1

Download citation

Publish with us

Policies and ethics

Navigation