Experimental and Simulative Methods for the Analysis of Vehicle-Tire-Pavement Interaction

  • Chapter
  • First Online:
Coupled System Pavement - Tire - Vehicle

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 96))

  • 713 Accesses

Abstract

This subproject of the research group FOR2089 focuses on the vehicle-induced road load and the interaction between vehicle, tire and road. The here presented measurement methods are not only used to validate the different simulation models established by the research group members, but also to parametrize and optimize physical tire models for the application to real road topology as well as asphalt texture models. In comparison to models with a single-point road contact, a discretized tire footprint interacts locally with the road, which allows the investigation of ground pressure and shear stress distribution on varying surfaces. In previous studies, this local road load has not been validated at this level of detail. By a holistic analysis of the tire’s influence on the vehicle and the road at the same time, a more realistic vehicle-tire-pavement behavior can be predicted by the simulation models. This chapter is separated into two parts. The first part mainly focusses on methods regarding vertical forces. As heavy-duty vehicles cause the highest loads on the main traffic routes, the methods for vertical dynamics are applied for heavy-duty purposes. The influence of different component model approaches on the road load are presented and validated using a hydraulic axle test rig. The second part presents methods for analyzing horizontal forces in the tire-road interface on a passenger car level to take advantage of specialized measurement systems. The influence of asphalt modulation on the tire force transmission mechanisms and the vehicle dynamics are presented. Furthermore, the friction characteristics on asphalt is investigated with a special regard to future tire measurement on artificial surfaces with asphalt texture.

Funded by the German Research Foundation (DFG) under grant EC 412/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anghelache, G., Moisescu, R.: Measurement of stress distributions in truck tyre contact patch in real rolling conditions. Vehicle Syst. Dyn. 50, 1747–1760 (2012)

    Article  Google Scholar 

  2. Bachmann, C.: Vergleichende Rollwiderstandsmessungen an Lkw-Reifen im Labor und auf realen Fahrbahnen. Ph.D. thesis, RWTH Aachen University (2018)

    Google Scholar 

  3. Bukovics, J., Roca, E., Gerschütz, W., Kolm, H., Scheider, A.: Auslegung von Akustik und Schwingungskomfort. Vieweg-Verlag, Wiesbaden (2008)

    Book  Google Scholar 

  4. Fernando, E. G., Musani, D., Park, D-W., Liu, W.: Evaluation of effects of tire size and inflation pressure on tire contact stresses and pavement response. Texas Transportation Institute, http://tti.tamu.edu/documents/0-4361-1.pdf. Last accessed 11 Dec 2020

  5. Friederichs, J., Wegener, D., Eckstein, L., Hartung, F., Kaliske, M., Götz, T., Ressel, W.: Using a new 3D-print-method to investigate rubber friction laws on different scales. Tire Sci. Technol. 48, 250–286 (2020)

    Article  Google Scholar 

  6. Friederichs, J., Eckstein, L.: Enhanced prediction of the tire-road-interaction by considering the surface texture, In: Functional Pavements – Proceedings of the 6th Chinese – European Workshop on Functional Pavement Design (CEW 2020). CRC Press, Nan**g (2020)

    Google Scholar 

  7. Gallrein, A.: CDTire – State-of-the-art Tire Models for Full Vehicle Simulation. Fraunhofer ITWM, Kaiserslautern (2004)

    Google Scholar 

  8. Gipser, M.: Reifenmodelle in der Fahrzeugdynamik: eine einfache Formel genügt nicht mehr, auch wenn sie magisch ist. MKS-Simulation in der Automobilindustrie, Graz (2001)

    Google Scholar 

  9. Gipser, M.: The FTire Tire Model. https://www.cosin.eu/wp-content/uploads/ftire_eng_3.pdf. Last accessed 11 Dec 2020

  10. Hartung, F., Kienle, R., Götz, T., Winkler, T., Ressel, W., Eckstein, L., Kaliske, M.: Numerical determination of hysteresis friction on different length scales and comparison to experiments. Tribol. Int. 127, 165–176 (2018)

    Article  Google Scholar 

  11. ISO 7401:2011 – Road vehicles – Lateral transient response test methods – Open-loop test methods. International Standard, Geneva (2011)

    Google Scholar 

  12. Isermann, R.: Fahrdynamik-Regelung – Modellbildung, Fahrerassistenzsysteme, Mechatronik. Vieweg-Verlag, Wiesbaden,  (2006)

    Book  Google Scholar 

  13. Kanafi, M.: Rocky road – surface roughness impacts on rubber friction. Ph.D. thesis, Aalto University (2017)

    Google Scholar 

  14. Karnopp, D., Crosby, M., Harwood, R.: Vibration control using semi-active force generators. J. Eng. Indus. 96, 619–626 (1974)

    Article  Google Scholar 

  15. Khandavalli, G., Kalabis, M., Wegener, D., Eckstein, L.: Potentials of modern active suspension control strategies – From model predictive control to deep learning approaches. In: 10th International Munich Chassis Symposium 2019, pp. 179–199. Springer Vieweg, Wiesbaden (2020)

    Google Scholar 

  16. Knauer, P.: Objektivierung des Schwingungskomforts bei instationärer Fahrbahnanregung. Ph.D. thesis, Technische Universität München (2010)

    Google Scholar 

  17. Liu, X., Cao, Q., Wang, H., Chen, J., Huang, H.: Evaluation of vehicle braking performance on wet pavement surface using an integrated tire-vehicle modeling approach. Transp. Res. Rec. 2673, 295–307 (2019)

    Article  Google Scholar 

  18. Oertel, C., Eichler, M., Fandre, A.: RMOD-K – Modellsystem zur Simulation des Reifenverhaltens beim Überrollen kurzwelliger Unebenheiten – Version 6.0. In: International ADAMS User’s Conference, Berlin (1999)

    Google Scholar 

  19. Pacejka, H.: Tyre and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann - Elsevier, Burlington (2012)

    Google Scholar 

  20. ProgTrans, A.G.: Abschätzung der langfristigen Entwicklung des Güterverkehrs in Deutschland bis 2050. Bundesministerium für Verkehr, Bau und Stadtentwicklung, Basel (2007)

    Google Scholar 

  21. Rauh, J.: OpenCRG – The open standard to represent high precision 3D road data in vehicle simulation tasks on rough roads for handling, ride comfort, and durability load analyses. http://www.opencrg.org. Last accessed 10 Dec 2020

  22. Savaresi, S., Poussot-Vassal, C., Spelta, C., Sename, O., Dugard, L.: Semi-Active Suspension Control Design for Vehicles. Butterworth-Heinemann, Oxford (2010)

    Google Scholar 

  23. Shell, A.G.: Shell LKW-Studie – Fakten, Trends und Perspektiven im Straßengüterverkehr bis 2030, Hamburg/Berlin (2010)

    Google Scholar 

  24. VDI-Richtlinie 2057-1: Einwirkung mechanischer Schwingungen auf den Menschen Ganzkörper-Schwingungen. Verein Deutscher Ingenieure e. V., Darmstadt (2017)

    Google Scholar 

  25. Valášek, M., Kortüm, W.: Semi-active suspension systems II. In: Nwokah, O., Hurmuzlu, Y. (eds.) The Mechanical Systems Handbook. CRC Press LLC, Boca Raton, Florida (2002)

    Google Scholar 

  26. Velske, S., Mentlein, H., Eymann, P.: Straßenbau – Straßenbautechnik. Werner Verlag, Düsseldorf (2009)

    Google Scholar 

  27. Winkler, T., Wegener, D., Eckstein, L.: Method development to analyse the vertical and lateral dynamic road-vehicle interaction of heavy-duty vehicles. Autom. Engine Technol. 3, 129–139 (2018)

    Article  Google Scholar 

  28. Winkler, T.: Generierung quasi-rollender Prüfstandsanregungssignale für ein gekoppeltes Reifen-Fahrbahn-System. Ph.D. thesis, RWTH Aachen University (2018)

    Google Scholar 

  29. Zegelaar, P.: The dynamic response of tyres to brake torque variations and road unevenesses, Ph.D. thesis, Delft University of Technology (1998)

    Google Scholar 

  30. Zheng, B., Chen, J., Runmin, Z., **aoming, H.: Skid resistance demands of asphalt pavement during the braking process of autonomous vehicles. MATEC Web Conf. 275, 04002 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Friederichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friederichs, J., Khandavalli, G., Eckstein, L. (2021). Experimental and Simulative Methods for the Analysis of Vehicle-Tire-Pavement Interaction. In: Kaliske, M., Oeser, M., Eckstein, L., Leischner, S., Ressel, W., Wellner, F. (eds) Coupled System Pavement - Tire - Vehicle. Lecture Notes in Applied and Computational Mechanics, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-75486-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75486-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75485-3

  • Online ISBN: 978-3-030-75486-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation