Optimizing Force Transfer in a Soft Exoskeleton Using Biomechanical Modeling

  • Conference paper
  • First Online:
Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021) (IEA 2021)

Abstract

A newly developed prototype of a soft cable-driven elbow exoskeleton for lifting and lowering of loads was developed. To identify potential harmful forces within the elbow joint, an analysis was conducted with biomechanical simulation. To analyze the effect of the exoskeleton on the human body, biomechanical simulations were conducted on the prototype to assess the joint reaction forces during a lifting task with and without the soft elbow exoskeleton. To reduce these forces, the optimal way to attach the cables for generating the moment around the elbow needs to be identified using biomechanical simulation. First results show that in average the load on the elbow joint is reduced while wearing the exoskeleton compared to lifting 5 kg without any assistance. A large distance between the lower arm and the attachment point in ventral direction is very beneficial, due to the introduction of another lever arm into the system. Especially if the elbow is fully stretched, whereas the pulling force vector would go parallel to the arm. With the implementation of the lever arm, the load on the elbow is lower for any position of the arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pons, J.L.: Wearable Robots. Biomechatronic Exoskeletons. Wiley, New York (2008)

    Google Scholar 

  2. Jarrasse, N., Morel, G.: Connecting a human limb to an exoskeleton. IEEE Trans. Robot. 28, 697–709 (2011)

    Article  Google Scholar 

  3. Harbauer, C.M., Fleischer, M., Nguyen, T., Bos, F., Bengler, K.: Too close to comfort? A new approach of designing a soft cable-driven exoskeleton for lifting tasks under ergonomic aspects. In: IRCE 2020. 2020 the 3rd International Conference on Intelligent Robotic and Control Engineering, Oxford, UK, 10–12 August 2020, pp. 105–109. IEEE, Piscataway (2020)

    Google Scholar 

  4. Khamar, M., Edrisi, M., Zahiri, M.: Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction. MethodsX 6, 1838–1846 (2019)

    Article  Google Scholar 

  5. Tröster, M., Wagner, D., Müller-Graf, F., Maufroy, C., Schneider, U., Bauernhansl, T.: Biomechanical model-based development of an active occupational upper-limb exoskeleton to support healthcare workers in the surgery waiting room. Int J Environ Res Public Health 17, 5140 (2020)

    Article  Google Scholar 

  6. Zhou, L., Bai, S., Andersen, M.S., Rasmussen, J.: Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity. MIC 36, 167–177 (2015)

    Article  Google Scholar 

  7. Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng 33, 829–840 (2005)

    Article  Google Scholar 

  8. Kapandji, A.I., Rehart, S. (eds.): Funktionelle Anatomie der Gelenke. Schematisierte und kommentierte Zeichnungen zur menschlichen Biomechanik. Georg Thieme Verlag, Stuttgart, New York (2016)

    Google Scholar 

  9. Harbauer, C., Knott, V., Hergeth, L., Bengler, K.: Kinematische evaluation eines aktiven exoskeletts. In: 2019, Gesellschaft für Arbeitswissenschafst e. V. (GfA) (ed.) 65. Frühjahrkonferenz der GfA. Arbeit interdisziplinär analysieren - bewerten - gestalten, Beitrag B.4.4. GfA Press (2019)

    Google Scholar 

  10. Steele, K.M., Demers, M.S., Schwartz, M.H., Delp, S.L.: Compressive tibiofemoral force during crouch gait. Gait Posture 35, 556–560 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Harbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harbauer, C.M., Fleischer, M., Bandmann, C.E.M., Bengler, K. (2022). Optimizing Force Transfer in a Soft Exoskeleton Using Biomechanical Modeling. In: Black, N.L., Neumann, W.P., Noy, I. (eds) Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). IEA 2021. Lecture Notes in Networks and Systems, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-74614-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74614-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74613-1

  • Online ISBN: 978-3-030-74614-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation