Part of the book series: Springer Handbooks ((SHB))

  • 3967 Accesses

Abstract

De Broglie optics concerns the propagation of quantum mechanical particle waves, their reflection, refraction, diffraction, and interference. The basic principles of De Broglie optics, which are quite similar to the principles of ordinary light optics, do not depend much on the specific nature of the sort of particles under consideration – electron, neutron, atom, ion, or molecule, but the focus in this chapter is on the De Broglie optics of atoms and molecules. This sort of particle comes with a variety of internal degrees of freedom, which are easily addressed and manipulated with electromagnetic fields, in particular laser fields, and thereby allow for quite a broad spectrum of different applications in lithography, imaging, and precision measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pozzi, G.: Particles and Waves in Electron Optics and Microscopy. Academic Press, Cambridge (2016)

    Google Scholar 

  2. Tonomura, A.: Electron Holography. In: Shimoda, K. (ed.) Springer Series in Optical Sciences, vol. 70, Springer, Berlin, Heidelberg (1993)

    Google Scholar 

  3. Utsuro, M., Ignatovich, V.K. (eds.): Handbook of Neutron Optics. John Wiley & Sons, Hoboken (2010)

    Google Scholar 

  4. Rauch, H., Werner, S.A.: Neutron Interferometry. Clarendon Press, Oxford (2000)

    Google Scholar 

  5. Meystre, P.: Atom Optics. Springer, Berlin, Heidelberg (2001)

    MATH  Google Scholar 

  6. Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009)

    ADS  Google Scholar 

  7. Rohwedder, B.: Resource Letter AON-1: Atom optics, a tool for nanofabrication. Am. J. Phys. 75, 394 (2007)

    ADS  Google Scholar 

  8. Witham, P.W., Sanchez, E.: A simple approach to neutral atom microscopy. Rev. Sci. Instr. 82, 103705 (2011)

    ADS  Google Scholar 

  9. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum Interference of Large Organic Molecules. Nat. Commun. 2, 263 (2011)

    ADS  Google Scholar 

  10. Müller, H., Peters, A., Chu, S.: A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926 (2010)

    ADS  Google Scholar 

  11. Lan, S.-Y., Kuan, P.-C., Estey, B., English, D., Brown, J.N., Hohensee, M.A., Müller, H.: A clock directly linking time to a particle's mass. Science 339, 554 (2013)

    ADS  Google Scholar 

  12. Rosi, G.: Precision measurement of the Newton gravitational constant using cold atoms. Nature 510, 518 (2014)

    ADS  Google Scholar 

  13. dos Santos, F.P., Bonvalot, S.: Cold-Atom Absolute Gravimetry. In: Grafarend, E. (ed.) Encyclopedia of Geodesy. Springer, Cham (2016)

    Google Scholar 

  14. Barrett, B., Antoni-Micollier, L., Chichet, L., Battellier, B., Lévèque, T., Landragin, A., Bouyer, P.: Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016)

    ADS  Google Scholar 

  15. Hamilton, P., et al.: Atom-interferometry constraints on dark energy. Science 349, 849 (2015)

    ADS  Google Scholar 

  16. Arndt, M., Hornberger, K.: Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271 (2014)

    Google Scholar 

  17. Pikovski, I., Zych, M., Costa, F., Brukner, C.: Universal decoherence due to gravitational time dilation. Nat. Phys. 11, 668 (2015)

    Google Scholar 

  18. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin, Heidelberg (2003)

    MATH  Google Scholar 

  19. Anderson, B.P., Meystre, P.: Nonlinear atom optics. Contemp. Phys. 44, 473 (2003)

    ADS  Google Scholar 

  20. Deng, L., et al.: Four-wave mixing with matter waves. Nature 398, 218 (1999)

    ADS  Google Scholar 

  21. Inouye, S., et al.: Phase-coherent amplification of atomic matter waves. Nature 402, 641 (1999)

    ADS  Google Scholar 

  22. Berry, M.V., Upstill, C.: Catastrophe optics: morphology of caustics and their diffraction patterns. In: Wolf, E. (ed.) Progress in Optics, vol. XVIII, pp. 259–346. North-Holland, Amsterdam (1980)

    Google Scholar 

  23. Balykin, V.I., Letokhov, V.S., Ovchinnikov, Y.B., Sidorov, A.I.: Quantum-state–selective mirror reflection of atoms by laser light. Phys. Rev. Lett. 60, 2137 (1988)

    ADS  Google Scholar 

  24. Kasevich, M.A., Weiss, D.S., Chu, S.: Normal-incidence reflection of slow atoms from an optical evanescent wave. Opt. Lett. 15, 607 (1990)

    ADS  Google Scholar 

  25. Wang, Y., et al.: Magnetic lattices for ultracold atoms and degenerate quantum gases. Sci. Bull. 61(14), 1097 (2016)

    Google Scholar 

  26. Dowling, J.P., Gea-Banacloche, J.: Evanescent light-wave atom mirrors, resonators, waveguides, and traps. In: Berman, P.R. (ed.) Adv. At. Mol. Opt. Phys, vol. 37, pp. 1–94. Academic Press, New York (1997)

    Google Scholar 

  27. Aminoff, C.G., et al.: Cesium atoms bouncing in a stable gravitational cavity. Phys. Rev. Lett. 71, 3083 (1993)

    ADS  Google Scholar 

  28. Hammes, M., et al.: Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap. J. Mod. Opt. 47, 2755 (2000)

    ADS  Google Scholar 

  29. Vetsch, E., et al.: Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010)

    ADS  Google Scholar 

  30. Sleator, T., Pfau, T., Balykin, V., Mlynek, J.: Imaging and focusing of an atomic beam with a large period standing light wave. Appl. Phys. B 54, 375 (1992)

    ADS  Google Scholar 

  31. Balykin, V.I.: Atom waveguides. In: Bederson, B., Walther, H. (eds.) Adv. At. Mol. Opt. Phys, vol. 41, pp. 181–260. Academic Press, San Diego (1999)

    Google Scholar 

  32. Hinds, E.A., Hughes, I.G.: Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J. Phys. D Appl. Phys. 32, R199 (1999)

    Google Scholar 

  33. Amico, L., et al.: Roadmap on Atomtronics, AVS Quantum. Sci. 3, 039201 (2021)

    ADS  Google Scholar 

  34. Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth's gravitational field. Nature 415, 297 (2002)

    ADS  Google Scholar 

  35. Ito, H., et al.: Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. Phys. Rev. Lett. 76, 4500 (1996)

    ADS  Google Scholar 

  36. Bloch, I.: Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005)

    Google Scholar 

  37. Schmiedmayer, J.: Guiding and trap** a neutral atom on a wire. Phys. Rev. A 52, R13 (1995)

    ADS  Google Scholar 

  38. Reichel, J., Vuletić, V. (eds.): Atom Chips. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  39. Keil, M., Amit, O., Zhou, S., Groswasser, D., Japha, Y., Folman, R.: Fifteen years of cold matter on the atom chip: promise, realizations, and prospects. J. Mod. Opt. 63, 1840 (2016)

    ADS  Google Scholar 

  40. Wang, Y.-J., et al.: Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005)

    ADS  Google Scholar 

  41. Berrada, T., van Frank, S., Bücker, R., Schumm, T., Schaff, J.-F., Schmiedmayer, J.: Integrated Mach–Zehnder interferometer for Bose–Einstein condensates. Nat. Commun. 4, 2077 (2013)

    ADS  Google Scholar 

  42. Keith, D.W., Schattenburg, M.L., Smith, H.I., Pritchard, D.E.: Diffraction of atoms by a transmission grating. Phys. Rev. Lett. 61, 1580 (1988)

    ADS  Google Scholar 

  43. Carnal, O., Mlynek, J.: Young's double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689 (1991)

    ADS  Google Scholar 

  44. Arndt, M., et al.: Wave-particle duality of C60 molecules. Nature 401, 680 (1999)

    ADS  Google Scholar 

  45. Carnal, O., et al.: Imaging and focusing of atoms by a Fresnel zone plate. Phys. Rev. Lett. 67, 3231 (1991)

    ADS  Google Scholar 

  46. Clauser, J.F., Reinsch, M.: New theoretical and experimental results in Fresnel optics with applications to matter-wave and X-ray interferometry. Appl. Phys. B 54, 380 (1992)

    ADS  Google Scholar 

  47. Gould, P.L., Ruff, G.A., Pritchard, D.E.: Diffraction of atoms by light: the near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827 (1986)

    ADS  Google Scholar 

  48. Sleator, T., et al.: Experimental demonstration of the optical Stern–Gerlach effect. Phys. Rev. Lett. 68, 1996 (1992)

    ADS  Google Scholar 

  49. Gerlich, S., et al.: A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nat. Phys. 3, 711 (2007)

    Google Scholar 

  50. Martin, P.J., Oldaker, B.G., Miklich, A.H., Pritchard, D.E.: Bragg scattering of atoms from a standing light wave. Phys. Rev. Lett. 60, 515 (1988)

    ADS  Google Scholar 

  51. Pfau, T., et al.: Magneto-optical beam splitter for atoms. Phys. Rev. Lett. 71, 3427 (1993)

    ADS  Google Scholar 

  52. Henkel, C., et al.: Theory of atomic diffraction from evanescent waves. Appl. Phys. B 69, 277 (1999)

    ADS  Google Scholar 

  53. Landragin, A., et al.: A reflection grating for atoms at normal incidence. Europhys. Lett. 39, 485 (1997)

    ADS  Google Scholar 

  54. Stehle, C., Bender, H., Zimmermann, C., Kern, D., Fleischer, M., Slama, S.: Plasmonically tailored micropotentials for ultracold atoms. Nat. Photon. 5, 494 (2011)

    ADS  Google Scholar 

  55. Keith, D.W., Ekstrom, C.R., Turchette, Q.A., Pritchard, D.E.: An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)

    ADS  Google Scholar 

  56. Juffmann, T., Ulbricht, H., Arndt, M.: Experimental methods of molecular matter-wave optics. Rep. Progr. Phys. 76, 086402 (2013)

    ADS  Google Scholar 

  57. Werner, S.A., Staudenmann, J., Colella, R.: Effect of Earth's rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103 (1979)

    ADS  Google Scholar 

  58. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Aharonov, Y., Casher, A.: Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319 (1984)

    ADS  MathSciNet  Google Scholar 

  60. Sangster, K., Hinds, E.A., Barnett, S.M., Riis, E.: Measurement of the Aharonov–Casher phase in an atomic system. Phys. Rev. Lett. 71, 3641 (1993)

    ADS  Google Scholar 

  61. Wilkens, M.: Quantum phase of a moving dipole. Phys. Rev. Lett. 72, 5 (1994)

    ADS  Google Scholar 

  62. Lepoutre, S., Gauguet, A., Trénec, G., Büchner, M., Vigué, J.: He–McKellar–Wilkens topological phase in atom interferometry. Phys. Rev. Lett. 109, 120404 (2012)

    ADS  Google Scholar 

  63. Bordé, C.J.: Atomic interferometry with internal state labelling. Phys. Lett. A. 140, 10 (1989)

    ADS  Google Scholar 

  64. Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991)

    ADS  Google Scholar 

  65. Sokolov, Y.L., Yakovlev, V.P.: Measurement of the Lamb shift in the hydrogen atom (n = 2). Sov. Phys. JETP 56, 7 (1982)

    ADS  Google Scholar 

  66. Robert, J., et al.: Atomic interferometry with metastable hydrogen atoms. Europhys. Lett. 16, 29 (1991)

    ADS  Google Scholar 

  67. Haroche, S., Raimond, J.M.: Manipulation of non classical field states by atom interferometry. In: Berman, P.R. (ed.) Cavity Quantum Electrodynamics, Adv. At. Mol. Opt. Phys., suppl. 2, pp. 123–170. Academic Press, Boston (1994)

    Google Scholar 

  68. Taylor, B., Schernthanner, K.J., Lenz, G., Meystre, P.: The van Cittert–Zernike theorem in atom optics. Opt Commun 110, 569 (1994)

    ADS  Google Scholar 

  69. Köhl, M., Hänsch, T.W., Esslinger, T.: Measuring the temporal coherence of an atom laser beam. Phys. Rev. Lett. 87, 160404 (2001)

    ADS  Google Scholar 

  70. Pfau, T., et al.: Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223 (1994)

    ADS  Google Scholar 

  71. Chapman, M.S., et al.: Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783 (1995)

    ADS  Google Scholar 

  72. Kurtsiefer, C., et al.: Observation of correlated atom-photon pairs on the single particle level. Phys. Rev. A 55, R2539 (1997)

    ADS  Google Scholar 

  73. Hackermüller, L., et al.: Decoherence in a Talbot–Lau interferometer: the influence of molecular scattering. Appl. Phys. B 77, 781 (2003)

    ADS  Google Scholar 

  74. Landragin, A., et al.: Specular versus diffuse reflection of atoms from an evanescent-wave mirror. Opt. Lett. 21, 1591 (1996)

    ADS  Google Scholar 

  75. Henkel, C., Wilkens, M.: Heating of trapped atoms near thermal surfaces. Europhys. Lett. 47, 414 (1999)

    ADS  Google Scholar 

  76. Harber, D.M., McGuirk, J.M., Obrecht, J.M., Cornell, E.A.: Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low. Temp. Phys. 133, 229 (2003)

    ADS  Google Scholar 

  77. Romero-Isart, O., et al.: Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 020405 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Henkel or Martin Wilkens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Henkel, C., Wilkens, M. (2023). De Broglie Optics. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_81

Download citation

Publish with us

Policies and ethics

Navigation