Part of the book series: Springer Handbooks ((SHB))

  • 3973 Accesses

Abstract

Interactions of light with an atomic particle are accompanied by exchange of momentum between the electromagnetic field and the atom. Narrowband resonance radiation from tunable lasers enhances the ensuing mechanical effects of light to the extent that it is possible to stop atoms emanating from a thermal gas and to trap atoms with light. We will also discuss charged ions trapped by types of electromagnetic fields other than light, and possibly cooled with light. The emphasis is on basic theoretical concepts and experimental procedures. Cooling and trap** of atomic particles is now a basic tool and large swaths of modern AMO physics depend on it, so the discussion of applications is necessarily cursory.

At the time of writing, the book 1 appears to be the standard reference on cooling and trap** of atoms. Reviews of various vintages with a substantial component on trapped particles include 2 ; 3 ; 4 ; 5 . Optical lattices binding atoms, discussed in a tutorial manner in 6 , is presently a prominent frontier. Additional references ranging from pioneering works to representative recent examples are given as leads into specific topics. No assignment of credit or priority is implied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metcalf, H., van der Straten, P.: Laser Cooling and Trap**. Springer, New York (1999)

    Book  Google Scholar 

  2. Wineland, D., Itano, W.M., Van Dyck Jr, R.: High-resolution spectroscopy of stored ions. Adv. At. Mol. Phys. 19, 135–186 (1983)

    Article  ADS  Google Scholar 

  3. Brown, L.S., Gabrielse, G.: Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986). https://doi.org/10.1103/RevModPhys.58.233

    Article  ADS  Google Scholar 

  4. Stenholm, S.: The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699–739 (1986). https://doi.org/10.1103/RevModPhys.58.699

    Article  ADS  Google Scholar 

  5. Knoop, M., Madsen, N., Thompson, R.C. (eds.): Physics with Trapped Charged Particles. Imperial College Press, London (2014)

    Google Scholar 

  6. Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006). https://doi.org/10.1103/RevModPhys.78.179

    Article  ADS  Google Scholar 

  7. (2018). http://steck.us/alkalidata

  8. (2018). https://physics.nist.gov/PhysRefData/ASD/lines_form.html

  9. Javanainen, J.: Density-matrix equations and photon recoil for multistate atoms. Phys. Rev. A 44, 5857–5880 (1991). https://doi.org/10.1103/PhysRevA.44.5857

    Article  ADS  Google Scholar 

  10. Castin, Y., Mølmer, K.: Monte Carlo wave-function analysis of 3D optical molasses. Phys. Rev. Lett. 74, 3772–3775 (1995). https://doi.org/10.1103/PhysRevLett.74.3772

    Article  ADS  Google Scholar 

  11. Dalibard, J., Cohen-Tannoudji, C.: Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989). https://doi.org/10.1364/JOSAB.6.002023

    Article  ADS  Google Scholar 

  12. Gerz, C., Hodapp, T.W., Jessen, P., Jones, K.M., Phillips, W.D., Westbrook, C.I., Molmer, K.: The temperature of optical molasses for two different atomic angular momenta. EPL 21, 661 (1993)

    Article  ADS  Google Scholar 

  13. Bollinger, J.J., Wineland, D.J., Dubin, D.H.E.: Non-neutral ion plasmas and crystals, laser cooling, and atomic clocks. Phys. Plasmas 1, 1403–1414 (1994). https://doi.org/10.1063/1.870690

    Article  ADS  Google Scholar 

  14. Nam, Y., Weiss, D., Blümel, R.: Explicit, analytical radio-frequency heating formulas for spherically symmetric nonneutral plasmas in a Paul trap. Phys. Lett. A 381(40), 3477–3481 (2017). https://doi.org/10.1016/j.physleta.2017.09.001

    Article  ADS  Google Scholar 

  15. Henderson, K., Ryu, C., MacCormick, C., Boshier, M.G.: Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 11, 043030 (2009)

    Article  ADS  Google Scholar 

  16. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T., Browaeys, A.: An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016). https://doi.org/10.1126/science.aah3778

    Article  ADS  Google Scholar 

  17. Blatt, R., Zoller, P.: Quantum jumps in atomic systems. Eur. J. Phys. 9, 250 (1988)

    Article  Google Scholar 

  18. Danzl, J.G., Mark, M.J., Haller, E., Gustavsson, M., Hart, R., Aldegunde, J., Hutson, J.M., Nägerl, H.-C.: An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265 (2010)

    Article  Google Scholar 

  19. Barry, J.F., McCarron, D.J., Norrgard, E.B., Steinecker, M.H., DeMille, D.: Magneto-optical trap** of a diatomic molecule. Nature 512, 286 (2014)

    Article  ADS  Google Scholar 

  20. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  21. Müller, H., Chiow, S.-W., Long, Q., Herrmann, S., Chu, S.: Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100, 180405 (2008). https://doi.org/10.1103/PhysRevLett.100.180405

    Article  ADS  Google Scholar 

  22. Zhai, H.: Degenerate quantum gases with spin–orbit coupling: A review. Rep. Prog. Phys. 78, 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Javanainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Javanainen, J. (2023). Cooling and Trap**. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_79

Download citation

Publish with us

Policies and ethics

Navigation