Abstract

This chapter outlines the physical principles and experimental methods used to investigate low energy ion–atom collisions. A low-energy collision is here defined as one in which the initial ion–atom relative velocity v is less than the mean orbital velocity ⟨ve⟩ of the active electrons during the collision. For outer or valence electrons, ⟨ve⟩ ≃ vB, where \(v_{\text{B}}={\mathrm{2.1877\times 10^{8}}}\,{\mathrm{cm/s}}\) is the Bohr velocity. In terms of the energy of a projectile ion, vB corresponds to 24.8 ke V ∕ u.

The theory and results of ion–atom scattering studies are further discussed in other chapters of the book. The focus here is on the experimental techniques. Since several of these depend on the characteristics of a specific process, the following section presents a summary of the physics of low-energy ion–atom collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pieksma, M., Gargaud, M., McCarroll, R., Havener, C.C.: Phys. Rev. A 54, R(13) (1996)

    Article  ADS  Google Scholar 

  2. Salop, A., Olson, R.E.: Phys. Rev. A 13, 1312 (1976)

    Article  ADS  Google Scholar 

  3. Ryufuku, H., Sasaki, K., Watanabe, T.: Phys. Rev. A 23, 745 (1980)

    Article  ADS  Google Scholar 

  4. Niehaus, A.: J. Phys. B 19, 2925 (1986)

    Article  ADS  Google Scholar 

  5. Barat, M., Roncin, P.: J. Phys. B 25, 2205 (1992)

    Article  ADS  Google Scholar 

  6. Shafroth, S.M., Austin, J.C.: Accelerator-based Atomic Physics Techniques and Applications. AIP Press, Woodbury (1997)

    Google Scholar 

  7. Havener, C.C., Westerveld, W.B., Risley, J.S., Tolk, N.H., Tully, J.C.: Phys. Rev. Lett. 48, 926 (1982)

    Article  ADS  Google Scholar 

  8. Havener, C.C., Rouze, N., Westerveld, W.B., Tully, J.C.: Phys. Rev. Lett. 53, 1049 (1984)

    Article  ADS  Google Scholar 

  9. Gilbody, H.B.: Adv. At. Mol. Phys. 22, 143 (1986)

    Article  ADS  Google Scholar 

  10. Havener, C.C., Huq, M.S., Krause, H.F., Schulz, P.A., Phaneuf, R.A.: Phys. Rev. A 39, 1725 (1989)

    Article  ADS  Google Scholar 

  11. Gioumoussis, G., Stevenson, D.P.: J. Chem. Phys. 29, 294 (1958)

    Article  ADS  Google Scholar 

  12. Church, D.A.: Phys. Rep. 228, 254 (1993)

    Article  ADS  Google Scholar 

  13. Kaneko, Y.: Comm. At. Mol. Phys. 10, 145 (1981)

    Google Scholar 

  14. Lindinger, W.: Phys. Scr. T 3, 115 (1983)

    Article  ADS  Google Scholar 

  15. Janev, R.K., Winter, H.: Phys. Rep. 117, 266–387 (1985)

    Article  ADS  Google Scholar 

  16. Van Zyl, B., Dunn, G.H., Chamberlain, G., Heddle, D.W.O.: Phys. Rev. A 22, 1916 (1980)

    Article  ADS  Google Scholar 

  17. Ćirić, D., Brazuk, A., Dijkkamp, D., de Heer, F.J., Winter, H.: J. Phys. B 18, 3639 (1985)

    ADS  Google Scholar 

  18. McCammon, D., Almy, R., Apodaca, E., Bergmann Tiest, W., Cui, W., Deiker, S., Galeazzi, M., Juda, M., Lesser, A., Mihara, T., Morgenthaler, J.P., Sanders, W.T., Zhang, J.: Astrophys. J. 576, 188 (2002)

    Article  ADS  Google Scholar 

  19. Beiersdorfer, P., Olson, R.E., Brown, G.V., Chen, H., Harris, C.L., Neill, P.A., Schweikhard, L., Utter, S.B., Widmann, K.: Phys. Rev. Lett. 85, 5090 (2000)

    Article  ADS  Google Scholar 

  20. Allen, F.I., Biedermann, C., Radtke, R., Fussmann, G., Fritzsche, S.: Phys. Rev. A 78, 032705 (2008)

    Article  ADS  Google Scholar 

  21. Tawara, H., Takács, E., Suta, T., Makónyi, K., Ratliff, L.P., Gillaspy, J.D.: Phys. Rev. A 73, 012704 (2006)

    Article  ADS  Google Scholar 

  22. Gilbody, H.B.: Adv. At. Mol. Opt. Phys. 32, 149 (1994)

    Article  ADS  Google Scholar 

  23. Stolterfoht, N.: Phys. Rep. 146, 316 (1987)

    Article  ADS  Google Scholar 

  24. Dörner, R., Mergel, V., Jagutzki, O., Spielberger, L., Ullrich, J., Moshammer, R., Schmidt-Böcking, H.: Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

  25. Ullrich, J., Moshammer, R., Dorn, A., Dörner, R., Schmidt, L.P.H., Schmidt-Böcking, H.: Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  26. DePaola, B., Morgenstern, R., Andersen, N.: Adv. At. Mol. Opt. Phys. 55, 139 (2008)

    Article  ADS  Google Scholar 

  27. Ali, R.: AIP Conf. Proc. 926, 216 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Havener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Havener, C., Zhang, R., Phaneuf, R. (2023). Ion–Atom Scattering Experiments: Low Energy. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_68

Download citation

Publish with us

Policies and ethics

Navigation