Role of Herbal Medicines in the Management of Brain Injury

  • Chapter
  • First Online:
Natural Products and Human Diseases

Abstract

Brain is susceptible to oxidative stress due to its increased oxygen consumption and low antioxidant levels. Oxidative stress plays a crucial role in the pathogenesis of various neurological diseases. This review on the role of herbal medicines in the management of brain injury was performed by searching Web of Science, PubMed, Google Scholar, Scopus, and Iran Medex between 1976 to January 2020. The search words contained brain injury, and the total number of publications for the review study was 32. Studies with various medicinal plants such as Acanthopanax senticosus, Bacopa monnieri, carnosol, Cassia mimosoides, Centella asiatica, Crocus sativus, Cuminum cyminum, curcumin, Feronia limonia, Gardenia jasminoides, Ginkgo biloba, Kaempferia parviflora, Mentha longifolia, Nigella sativa, olive, orientin, pomegranate, quercetin, rice bran, Rosa damascena, Thymus vulgaris, Viola odorata, Withania coagulans, Zingiber officinale, and Ziziphus spina-christi show a significant improvement in brain injury. The different mechanisms for improvement in brain injury by these medicinal plants include HIF-1 (hypoxia-inducible factor 1) signaling, free-radical scavenging, reduction of nitric oxide (NO) toxicity and acetylcholine esterase (AChE) activity, decrease of pAkt and its downstream targets, downregulation of the aquaporin-4 (AQP-4) and TLR4/NF-ĸB/TNF-α signal, reduction in malondialdehyde and NO levels, increasing neuronal density in the hippocampus, and inhibition of oxidative stress. In this review, the neuroprotective actions and molecular mechanisms of herbal medicines are evaluated by reviewing available studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samarghandian, S., Azimi Nezhad, M., & Samini, F. (2015). Preventive effect of safranal against oxidative damage in aged male rat brain. Experimental Animals, 64(1), 65–71.

    Article  CAS  PubMed  Google Scholar 

  2. Samarghandian, S., Afshari, R., & Farkhondeh, T. (2014). Effect of long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male rat liver. International Journal of Clinical and Experimental Medicine, 7(5), 1449–1453.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Samarghandian, S., Azimi Nezhad, M., Samini, F., & Farkhondeh, T. (2015). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4), 388–393.

    Article  PubMed  Google Scholar 

  4. Xue, J., Zhang, X., Zhang, C., Kang, N., Liu, X., Yu, J., et al. (2016). Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. Journal of Ethnopharmacology, 182, 181–189.

    Article  PubMed  Google Scholar 

  5. Commission SP. (2005). Pharmacopoeia of the People’s Republic of China(a). Bei**g: Chemical Industry Press.

    Google Scholar 

  6. Fujikawa, T., Yamaguchi, A., Morita, I., Takeda, H., & Nishibe, S. (1996). Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biological & Pharmaceutical Bulletin, 19(9), 1227–1230.

    Article  CAS  Google Scholar 

  7. Zhou, Y., Cheng, C., Baranenko, D., Wang, J., Li, Y., & Lu, W. (2018). Effects of Acanthopanax senticosus on brain injury induced by simulated spatial radiation in mouse model based on pharmacokinetics and comparative proteomics. International Journal of Molecular Sciences, 19(1), 1–20.

    Article  CAS  Google Scholar 

  8. Chopra, R., Nayar, S., Chopra, I., Asolkar, L., & Kakkar, K. (1956). Glossary of Indian medicinal plants (p. 1956). New Delhi: Council of Scientific & Industrial Research.

    Google Scholar 

  9. Bhattacharya, S., Bhattacharya, A., Kumar, A., & Ghosal, S. (2000). Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytotherapy Research, 14(3), 174–179.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X., Yue, R., Zhang, J., Shan, L., Wang, R., & Zhang, W. (2013). Neuroprotective effects of bacopaside I in ischemic brain injury. Restorative Neurology and Neuroscience, 31(2), 109–123.

    Article  CAS  PubMed  Google Scholar 

  11. Brieskorn, C. H., Fuchs, A., Bredenberg, J. B.-S., McChesney, J. D., & Wenkert, E. (1964). The structure of carnosol. The Journal of Organic Chemistry, 29(8), 2293–2298.

    Article  CAS  Google Scholar 

  12. Satoh, T., Izumi, M., Inukai, Y., Tsutsumi, Y., Nakayama, N., Kosaka, K., et al. (2008). Carnosic acid protects neuronal HT22 cells through activation of the antioxidant-responsive element in free carboxylic acid-and catechol hydroxyl moieties-dependent manners. Neuroscience Letters, 434(3), 260–265.

    Article  CAS  PubMed  Google Scholar 

  13. Frankel, E. N., Huang, S. W., Aeschbach, R., & Prior, E. (1996). Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. Journal of Agricultural and Food Chemistry, 44(1), 131–135.

    Article  CAS  Google Scholar 

  14. Samarghandian, S., AzimiNezhad, M., Borji, A., Samini, M., & Farkhondeh, T. (2017). Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complementary and Alternative Medicine, 17(1), 1–7.

    Article  Google Scholar 

  15. Park, J. H., & Kwon, S. J. (2009). Isolation of daucosterol and naphthalene glucoside from seeds of Cassia mimosoides var. nomame Makino. Korean Journal of Plant Resources, 22(1), 26–30.

    Google Scholar 

  16. Yamamoto, M., Shimura, S., Itoh, Y., Ohsaka, T., Egawa, M., & Inoue, S. (2000). Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. International Journal of Obesity, 24(6), 758–764.

    Article  CAS  PubMed  Google Scholar 

  17. Hatano, T., Yamashita, A., Hashimoto, T., Ito, H., Kubo, N., Yoshiyama, M., et al. (1997). Flavan dimers with lipase inhibitory activity from Cassia nomame. Phytochemistry, 46(5), 893–900.

    Article  CAS  Google Scholar 

  18. Kim, K. H., & Lee, J. W. (2010). Methanol extract of Cassia mimosoides var. nomame and its ethyl acetate fraction attenuate brain damage by inhibition of apoptosis in a rat model of ischemia-reperfusion. Preventive Nutrition and Food Science, 15(4), 255–261.

    Article  Google Scholar 

  19. Bown, D. (1995). The Royal Horticultural Society encyclopedia of herbs & their uses. London: Dorling Kindersley Limited.

    Google Scholar 

  20. Hagemann, R. C., Burnham, T. H., Granick, B., & Neubauer, D. (1996). Gotu kola. In The Lawrence review of natural pProducts: Facts and comparisons. St. Louis: JB Lippincott.

    Google Scholar 

  21. Flora, S., & Gupta, R. (2007). Beneficial effects of Centella asiatica aqueous extract against arsenic-induced oxidative stress and essential metal status in rats. Phytotherapy Research, 21(10), 980–988.

    Article  CAS  PubMed  Google Scholar 

  22. George, M., & Joseph, L. (2009). Anti-allergic, anti-pruritic, and anti-inflammatory activities of Centella asiatica extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 6(4), 554–559.

    PubMed  PubMed Central  Google Scholar 

  23. Dhanasekaran, M., Holcomb, L. A., Hitt, A. R., Tharakan, B., Porter, J. W., Young, K. A., et al. (2009). Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytotherapy Research, 23(1), 14–19.

    Article  PubMed  Google Scholar 

  24. Haleagrahara, N., & Ponnusamy, K. (2010). Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. The Journal of Toxicological Sciences, 35(1), 41–47.

    Article  CAS  PubMed  Google Scholar 

  25. Hashim, P., Sidek, H., Helan, M., Sabery, A., Palanisamy, U. D., & Ilham, M. (2011). Triterpene composition and bioactivities of Centella asiatica. Molecules, 16(2), 1310–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabassum, R., Vaibhav, K., Shrivastava, P., Khan, A., Ahmed, M. E., Javed, H., et al. (2013). Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurological Sciences, 34(6), 925–933.

    Article  PubMed  Google Scholar 

  27. Javadi, B., Sahebkar, A., & Emami, S. A. (2013). A survey on saffron in major Islamic traditional medicine books. Iranian Journal of Basic Medical Sciences, 16(1), 1–11.

    PubMed  PubMed Central  Google Scholar 

  28. Salomi, M., Nair, S. C., & Panikkar, K. (1991). Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nutrition and Cancer, 16(1), 67–72.

    Article  CAS  PubMed  Google Scholar 

  29. Assimopoulou, A., Sinakos, Z., & Papageorgiou, V. (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research, 19(11), 997–1000.

    Article  CAS  PubMed  Google Scholar 

  30. Hosseinzadeh, H., & Khosravan, V. (2001). Anticonvulsant effect of Crocus sativus L. stigmas aqueous and ethanolic extracts in mice. Archives of Iranian Medicine, 5(1), 44–47.

    Google Scholar 

  31. Zhang, Y., Shoyama, Y., Sugiura, M., & Saito, H. (1994). Effects of Crocus sativus L. on the ethanol-induced impairment of passive avoidance performances in mice. Biological & Pharmaceutical Bulletin, 17(2), 217–221.

    Article  CAS  Google Scholar 

  32. Abe, K., & Saito, H. (2000). Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytotherapy Research, 14(3), 149–152.

    Article  CAS  PubMed  Google Scholar 

  33. Escribano, J., Alonso, G. L., Coca-Prados, M., & Fernández, J. A. (1996). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100(1–2), 23–30.

    Article  CAS  PubMed  Google Scholar 

  34. Abdullaev, F. I. (2002). Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Experimental Biology and Medicine, 227(1), 20–25.

    Article  CAS  PubMed  Google Scholar 

  35. Rajaei, Z., Hosseini, M., & Alaei, H. (2016). Effects of Crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arquivos de Neuro-Psiquiatria, 74(9), 723–729.

    Article  CAS  PubMed  Google Scholar 

  36. Bie, X., Chen, Y., Zheng, X., & Dai, H. (2011). The role of crocetin in protection following cerebral contusion and in the enhancement of angiogenesis in rats. Fitoterapia, 82(7), 997–1002.

    Article  CAS  PubMed  Google Scholar 

  37. Tamaddonfard, E., Farshid, A. A., Ahmadian, E., & Hamidhoseyni, A. (2013). Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iranian Journal of Basic Medical Sciences, 16(1), 83–90.

    PubMed  PubMed Central  Google Scholar 

  38. Mehri, S., Abnous, K., Mousavi, S. H., Shariaty, V. M., & Hosseinzadeh, H. (2012). Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cellular and Molecular Neurobiology, 32(2), 227–235.

    Article  CAS  PubMed  Google Scholar 

  39. Deslauriers, A. M., Afkhami-Goli, A., Paul, A. M., Bhat, R. K., Acharjee, S., Ellestad, K. K., et al. (2011). Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. Journal of Immunology, 187(9), 4788–4799.

    Article  CAS  Google Scholar 

  40. Razavi, M., Hosseinzadeh, H., Abnous, K., Motamedshariaty, V. S., & Imenshahidi, M. (2013). Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iranian Journal of Basic Medical Sciences, 16(1), 64–69.

    PubMed  PubMed Central  Google Scholar 

  41. Hosseinzadeh, H., Sadeghnia, H. R., Ziaee, T., & Danaee, A. (2005). Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. Journal of Pharmacy & Pharmaceutical Sciences, 8(3), 387–393.

    CAS  Google Scholar 

  42. Hosseinzadeh, H., Modaghegh, M. H., & Saffari, Z. (2009). Crocus sativus L.(Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evidence-based Complementary and Alternative Medicine, 6(3), 343–350.

    Article  PubMed  Google Scholar 

  43. Vakili, A., Einali, M. R., & Bandegi, A. R. (2014). Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 23(1), 106–113.

    Article  PubMed  Google Scholar 

  44. Sarshoori, J. R., Asadi, M. H., & Mohammadi, M. T. (2014). Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iranian Journal of Basic Medical Sciences, 17(11), 895–902.

    PubMed  PubMed Central  Google Scholar 

  45. Oruc, S., Gönül, Y., Tunay, K., Oruc, O. A., Bozkurt, M. F., Karavelioğlu, E., et al. (2016). The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sciences, 154, 79–86.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, Y. Q., Liu, J. X., Wang, J. N., & Xu, L. (2007). Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Research, 1138, 86–94.

    Article  CAS  PubMed  Google Scholar 

  47. Saleem, S., Ahmad, M., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2006). Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. Journal of Medicinal Food, 9(2), 246–253.

    Article  PubMed  Google Scholar 

  48. Zargari, A. (1997). Medicinal plants. Tehran: Tehran University of Medical Sciences.

    Google Scholar 

  49. Malini, T., & Vanithakumari, G. (1987). Estrogenic activity of Cuminum cyminum in rats. Indian Journal of Experimental Biology, 25(7), 442–444.

    CAS  PubMed  Google Scholar 

  50. Sachin, B., Sharma, S., Sethi, S., Tasduq, S., Tikoo, M., Tikoo, A., et al. (2007). Herbal modulation of drug bioavailability: Enhancement of rifampicin levels in plasma by herbal products and a flavonoid glycoside derived from Cuminum cyminum. Phytotherapy Research, 21(2), 157–163.

    Article  CAS  PubMed  Google Scholar 

  51. Mansouri, M., Rahnema, M., & Eslami, M. (2016). The increasing effect of pre-feeding with cumin extract on the permeability of the brain-blood barrier caused by stroke in rats. Journal of Jahrom University of Medical Sciences, 13(4), 1–6.

    Google Scholar 

  52. Teymouri, M., Pirro, M., Johnston, T.P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346.

    Google Scholar 

  53. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L.E., Majeed, M., et al. (2018). Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Research, 68(7), 403–409.

    Google Scholar 

  54. Shakeri, F., Roshan, N. M., & Boskabady, M. H. (2019). Hydro-ethanolic extract of Curcuma longa affects tracheal responsiveness and lung pathology in ovalbumin-sensitized rats. International Journal for Vitamin and Nutrition Research, 25, 1–10.

    Google Scholar 

  55. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.

    Google Scholar 

  56. Shakeri, F., & Boskabady, M. H. (2017). Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat. BioFactors, 43(4), 567–576.

    Article  CAS  PubMed  Google Scholar 

  57. Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T.P., & Sahebkar, A. (2018). Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 233(1), 141–152.

    Google Scholar 

  58. Patel, P. B., Thakkar, V. R., & Patel, J. S. (2015). Cellular effect of curcumin and citral combination on breast cancer cells: Induction of apoptosis and cell cycle arrest. Journal of Breast Cancer, 18(3), 225–234.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jang, E. M., Choi, M. S., Jung, U. J., Kim, M. J., Kim, H. J., Jeon, S. M., et al. (2008). Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism, 57(11), 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  60. Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M. H., Khanbabaei, H., Shamshirian, A., et al. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology Research and Practice, 215(10), art. no. 152556.

    Google Scholar 

  61. Bianconi, V., Sahebkar, A., Atkin, S. L., & Pirro, M. (2018). The regulation and importance of monocyte chemoattractant protein-1. Current Opinion in Hematology, 25(1), 44–51.

    Google Scholar 

  62. Cui, X., Song, H., & Su, J. (2017). Curcumin attenuates hypoxic-ischemic brain injury in neonatal rats through induction of nuclear factor erythroid-2-related factor 2 and heme oxygenase-1. Experimental and Therapeutic Medicine, 14(2), 1512–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahamed, S. M., Swamy, S. K., Jayaverra, K., Rao, J., & Kumar, V. (2008). Anti-inflammatory, antipyretic and analgesic activity of methanolic extract of Feronia limonia fruit pulp. Pharmacology, 3, 852–857.

    Google Scholar 

  64. Kirtikar, K., & Basu, B. (1935). Indian medicinal plants Vol-4: Bishen Singh Mahendra Pal Singh (p. 139). Dehradun: International Bischemia reperfusion induced brain injury in ook Distributors.

    Google Scholar 

  65. Phapale, R., & Thakur, S. (2010). Antioxidant activity and antimutagenic effect of phenolic compounds in Feronia limonia (L.) Swingle Fruit. International Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 68–73.

    CAS  Google Scholar 

  66. Yang, J., Klaidman, L. K., Chang, M. L., Kem, S., Sugawara, T., Chan, P., et al. (2002). Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacology, Biochemistry, and Behavior, 73(4), 901–910.

    Article  CAS  PubMed  Google Scholar 

  67. Rakhunde, P. B., Saher, S., & Ali, S. A. (2014). Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats. Indian Journal of Pharmacology, 46(6), 617–626.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lelono, R., Tachibana, S., & Itoh, K. (2009). Isolation of antifungal compounds from Gardenia jasminoides. Pakistan Journal of Biological Sciences, 12(13), 949–956.

    Article  CAS  PubMed  Google Scholar 

  69. Koo, H. J., Lim, K. H., Jung, H. J., & Park, E. H. (2006). Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. Journal of Ethnopharmacology, 103(3), 496–500.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, H., Lai, Q., Li, Y., Liu, Y., & Yang, M. (2017). Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. Journal of Ethnopharmacology, 196, 225–235.

    Article  PubMed  Google Scholar 

  71. Ni, Y., Zhao, B., Hou, J., & **n, W. (1996). Preventive effect of Ginkgo biloba extract on apoptosis in rat cerebellar neuronal cells induced by hydroxyl radicals. Neuroscience Letters, 214(2–3), 115–118.

    Article  CAS  PubMed  Google Scholar 

  72. Chung, S. Y., Cheng, F. C., Lee, M. S., Lin, J. Y., Lin, M. C., & Wang, M. F. (2006). Ginkgo biloba leaf extract (EGb761) combined with neuroprotective agents reduces the infarct volumes of gerbil ischemic brain. The American Journal of Chinese Medicine, 34(05), 803–817.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, W., Hayashi, T., Kitagawa, H., Sasaki, C., Sakai, K., Warita, H., et al. (2000). Protective effect of ginkgo extract on rat brain with transient middle cerebral artery occlusion. Neurological Research, 22(5), 517–532.

    Article  CAS  PubMed  Google Scholar 

  74. Cho, J. H., Sung, J. H., Cho, E. H., Won, C. K., Lee, H. J., Kim, M. O., et al. (2009). Gingko biloba Extract (EGb 761) prevents ischemic brain injury by activation of the Akt signaling pathway. The American Journal of Chinese Medicine, 37(03), 547–555.

    Article  CAS  PubMed  Google Scholar 

  75. Attella, M. J., Hoffman, S. W., Stasio, M. J., & Stein, D. G. (1989). Ginkgo biloba extract facilitates recovery from penetrating brain injury in adult male rats. Experimental Neurology, 105(1), 62–71.

    Article  CAS  PubMed  Google Scholar 

  76. Tewtrakul, S., Subhadhirasakul, S., & Kummee, S. (2008). Anti-allergic activity of compounds from Kaempferia parviflora. Journal of Ethnopharmacology, 116(1), 191–193.

    Article  CAS  PubMed  Google Scholar 

  77. Sudwan, P., Saenphet, K., Saenphet, S., & Suwansirikul, S. (2006). Effect of Kaempferia parviflora Wall. ex. Baker on sexual activity of male rats and its toxicity. Southeast Asian Journal of Tropical Medicine and Public Health, 37, 210–215.

    PubMed  Google Scholar 

  78. Rujjanawate, C., Kanjanapothi, D., Amornlerdpison, D., & Pojanagaroon, S. (2005). Anti-gastric ulcer effect of Kaempferia parviflora. Journal of Ethnopharmacology, 102(1), 120–122.

    Article  CAS  PubMed  Google Scholar 

  79. Tewtrakul, S., Subhadhirasakul, S., Karalai, C., Ponglimanont, C., & Cheenpracha, S. (2009). Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata. Food Chemistry, 115(2), 534–538.

    Article  CAS  Google Scholar 

  80. Spencer, J. P. (2009). Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes & Nutrition, 4(4), 243–250.

    Article  CAS  Google Scholar 

  81. Phachonpai, W., Maharun, S., Muchimapura, S., Wattanathorn, J., & Tong-Un, T. (2012). Effect of dietary Kaempferia parviflora on ischemic brain injury in the rat. Journal of Biological Sciences, 12(1), 27–33.

    CAS  Google Scholar 

  82. Van Wyk, B. E. (1997). Oudtshoorn Bv, Gericke N. medicinal plants of South Africa. Pretoria: Briza.

    Google Scholar 

  83. Omidbaigi, R. (2005). Production and processing of medicinal plants. Mashhad: Publications Astan Quds Razavi. 438 p [In Persian].

    Google Scholar 

  84. Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B., & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica, 69(05), 413–419.

    Article  PubMed  Google Scholar 

  85. Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., et al. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry, 103(4), 1449–1456.

    Article  CAS  Google Scholar 

  86. Fathi, F., Oryan, S., Rafieian-KopaeI, M., & Eidi, A. (2015). Neuroprotective effect of pretreatment with Mentha longifolia L. extract on brain ischemia in the rat stroke model. Archives of Biological Sciences, 67(4), 1151–1163.

    Article  Google Scholar 

  87. Goreja, W. (2003). Black seed. nature’s miracle (pp. 1–64). New York: Remedy Amazing Herbs Press.

    Google Scholar 

  88. Schleicher, P., & Saleh, M. (2000). Black cumin: The magical Egyptian herb for allergies, asthma, and immune disorders. Rochester: Inner Traditions International, Limited.

    Google Scholar 

  89. Panahpour, H., Golmohammadi, M., & Mohamadnejad, S. (2015). Effects of the treatment with nigella sativa oil on brain injury and edema in experimental model of stroke in rats. Journal of Ardabil University of Medical Sciences, 15(3), 300–310.

    Google Scholar 

  90. Esmaeili-Mahani, S., Rezaeezadeh-Roukerd, M., Esmaeilpour, K., Abbasnejad, M., Rasoulian, B., Sheibani, V., et al. (2010). Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats. Journal of Ethnopharmacology, 132(1), 200–205.

    Article  PubMed  Google Scholar 

  91. Ji, C., Wu, G., & Shen, Z. (2003). Effects of olive leaf extract on glycemia and lipidemia in normal and diabetic mice induced by streptozocin. Journal of Southeast University, 4, 236–238.

    Google Scholar 

  92. Kaeidi, A., Esmaeili-Mahani, S., Sheibani, V., Abbasnejad, M., Rasoulian, B., Hajializadeh, Z., et al. (2011). Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: In vitro and in vivo studies. Journal of Ethnopharmacology, 136(1), 188–196.

    Article  PubMed  Google Scholar 

  93. Bouaziz, M., Grayer, R. J., Simmonds, M. S., Damak, M., & Sayadi, S. (2005). Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar Chemlali growing in Tunisia. Journal of Agricultural and Food Chemistry, 53(2), 236–241.

    Article  CAS  PubMed  Google Scholar 

  94. Jemai, H., El Feki, A., & Sayadi, S. (2009). Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food Chemistry, 57(19), 8798–8804.

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Y., Wang, S., Cui, W., He, J., Wang, Z., & Yang, X. (2013). Olive leaf extract inhibits lead poisoning-induced brain injury. Neural Regeneration Research, 8(22), 2021–2029.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Devi, P. U., Ganasoundari, A., Rao, B., & Srinivasan, K. (1999). In vivo radioprotection by ocimum flavonoids: Survival of mice. Radiation Research, 151(1), 74–78.

    Article  CAS  Google Scholar 

  97. Sun, Y., Yuan, H., Hao, L., Min, C., Cai, J., Liu, J., et al. (2013). Enrichment and antioxidant properties of flavone C-glycosides from trollflowers using macroporous resin. Food Chemistry, 141(1), 533–541.

    Article  CAS  PubMed  Google Scholar 

  98. Wang, X., An, F., Wang, S., An, Z., & Wang, S. (2017). Orientin Attenuates cerebral ischemia/reperfusion injury in rat model through the AQP-4 and TLR4/NF-κB/TNF-α signaling pathway. Journal of Stroke and Cerebrovascular Diseases, 26(10), 2199–2214.

    Article  PubMed  Google Scholar 

  99. Prashanth, D., Asha, M., & Amit, A. (2001). Antibacterial activity of Punica granatum. Fitoterapia, 72(2), 171–173.

    Article  CAS  PubMed  Google Scholar 

  100. Das, A. K., Mandal, S. C., Banerjee, S. K., Sinha, S., Das, J., Saha, B., et al. (1999). Studies on antidiarrhoeal activity of Punica granatum seed extract in rats. Journal of Ethnopharmacology, 68(1–3), 205–208.

    Article  CAS  PubMed  Google Scholar 

  101. Gharzouli, K., Khennouf, S., Amira, S., & Gharzouli, A. (1999). Effects of aqueous extracts from Quercus ilex l. root bark, Punica granatum l. fruit peel and Artemisia herba-alba Asso leaves on ethanol-induced gastric damage in rats. Phytotherapy Research, 13(1), 42–45.

    Article  CAS  PubMed  Google Scholar 

  102. Kaur, G., Jabbar, Z., Athar, M., & Alam, M. S. (2006). Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food and Chemical Toxicology, 44(7), 984–993.

    Article  CAS  PubMed  Google Scholar 

  103. Iqbal, S., Haleem, S., Akhtar, M., Zia-ul-Haq, M., & Akbar, J. (2008). Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Research International, 41(2), 194–200.

    Article  CAS  Google Scholar 

  104. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260.

    Article  CAS  Google Scholar 

  105. Rahimi, H. R., Arastoo, M., & Ostad, S. N. (2012). A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iranian Journal of Pharmaceutical Research, 11(2), 385–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Viladomiu, M., Hontecillas, R., Lu, P., & Bassaganya-Riera, J. (2013). Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evidence-based Complementary and Alternative Medicine, 2013, 1–18.

    Article  Google Scholar 

  107. Ahmed, M. A., El Morsy, E. M., & Ahmed, A. A. (2014). Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sciences, 110(2), 61–69.

    Article  CAS  PubMed  Google Scholar 

  108. Kovalenko, T., Osadchenko, I., Tsupykov, O., Pivneva, T., Shalamaĭ, A., Moĭbenko, O., et al. (2006). Neuroprotective effect of quercetin during experimental brain ischemia. Kiev Ukraine, 52(5), 21–27.

    CAS  Google Scholar 

  109. Rivera, F., Costa, G., Abin, A., Urbanavicius, J., Arruti, C., Casanova, G., et al. (2008). Reduction of ischemic brain damage and increase of glutathione by a liposomal preparation of quercetin in permanent focal ischemia in rats. Neurotoxicity Research, 13(2), 105–114.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, Z. J., Cheang, L. C. V., Wang, M. W., & Lee, S. M. Y. (2011). Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. International Journal of Molecular Medicine, 27(2), 195–203.

    PubMed  Google Scholar 

  111. Haleagrahara, N., Radhakrishnan, A., Lee, N., & Kumar, P. (2009). Flavonoid quercetin protects against swimming stress-induced changes in oxidative biomarkers in the hypothalamus of rats. European Journal of Pharmacology, 621(1–3), 46–52.

    Article  CAS  PubMed  Google Scholar 

  112. Ahmad, A., Khan, M. M., Hoda, M. N., Raza, S. S., Khan, M. B., Javed, H., et al. (2011). Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochemical Research, 36(8), 1360–1371.

    Article  CAS  PubMed  Google Scholar 

  113. McCaskill, D. R., & Zhang, F. (1999). Use of rice bran oil in foods. Food Technology Champaign Chicago, 53, 50–53.

    CAS  Google Scholar 

  114. Ardiansyah, G., Shirakawa, H., Koseki, T., Ohinata, K., Hashizume, K., & Komai, M. (2006). Rice bran fractions improve blood pressure, lipid profile, and glucose metabolism in stroke-prone spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 54(5), 1914–1920.

    Article  CAS  PubMed  Google Scholar 

  115. Hagl, S., Kocher, A., Schiborr, C., Eckert, S. H., Ciobanu, I., Birringer, M., et al. (2013). Rice bran extract protects from mitochondrial dysfunction in guinea pig brains. Pharmacological Research, 76, 17–27.

    Article  CAS  PubMed  Google Scholar 

  116. Baek, S. E., Kim, J. Y., Song, W. T., Lee, S. H., Hong, J. H., Lee, C. K., et al. (2014). Neuroprotective effect of rice bran extract supplemented with ferulic acid in the rat model of ischemic brain injury. Animal Cells & Systems, 18(2), 93–100.

    Article  CAS  Google Scholar 

  117. Loghmani, K. H., Sabzi, F. O., & Safari, J. (2007). Essential oil composition of Rosa damascena mill cultivated in Central Iran. Scientia Iranica, 14, 316–319.

    Google Scholar 

  118. Basim, E., & Basim, H. (2003). Antibacterial activity of Rosa damascena essential oil. Fitoterapia, 74(4), 394–396.

    Article  CAS  PubMed  Google Scholar 

  119. Velioglu, Y., & Mazza, G. (1991). Characterization of flavonoids in petals of Rosa damascena by HPLC and spectral analysis. Journal of Agricultural and Food Chemistry, 39(3), 463–467.

    Article  CAS  Google Scholar 

  120. Moniri, S. F., Hedayatpour, A., Hassanzadeh, G., Vazirian, M., Karimian, M., Belaran, M., et al. (2017). The effect of Rosa damascena extract on expression of neurotrophic factors in the CA1 neurons of adult rat hippocampus following ischemia. Acta Medica Iranica, 2017, 779–784.

    Google Scholar 

  121. Rasooli, I., & Mirmostafa, S. A. (2002). Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia, 73(3), 244–250.

    Article  CAS  PubMed  Google Scholar 

  122. Miura, K., Kikuzaki, H., & Nakatani, N. (2002). Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. Journal of Agricultural and Food Chemistry, 50(7), 1845–1851.

    Article  CAS  PubMed  Google Scholar 

  123. Ait M’Barek, L., Ait Mouse, H., Jaâfari, A., Aboufatima, R., Benharref, A., Kamal, M., et al. (2007). Cytotoxic effect of essential oil of thyme (Thymus broussonettii) on the IGR-OV1 tumor cells resistant to chemotherapy. Brazilian Journal of Medical and Biological Research, 40(11), 1537–1544.

    Article  PubMed  Google Scholar 

  124. Tepe, B., Daferera, D., Sökmen, M., Polissiou, M., & Sökmen, A. (2004). In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et PH Davis. Journal of Agricultural and Food Chemistry, 52(5), 1132–1137.

    Article  CAS  PubMed  Google Scholar 

  125. Goodner, K., Mahattanatawee, K., Plotto, A., Sotomayor, J., & Jordan, M. (2006). Aromatic profiles of Thymus hyemalis and Spanish T. vulgaris essential oils by GC–MS/GC–O. Industrial Crops and Products, 24(3), 264–268.

    Article  CAS  Google Scholar 

  126. Setorki, M., & Mirzapoor, S. (2017). Evaluation of Thymus vulgaris extract on hippocampal injury induced by transient global cerebral ischemia and reperfusion in rat. Zahedan Journal of Research in Medical Sciences, 19(5), 1–8.

    Article  Google Scholar 

  127. Baquar, S. R. (1989). Medicinal and poisonous plants of Pakistan. Karachi: Printas.

    Google Scholar 

  128. Keville, K. (1991). Herbs: An illustrated herb encyclopedia: A complete culinary, cosmetic, medicinal, and ornamental guide. East Roseville: Friedman/Fairfax.

    Google Scholar 

  129. Duke, J. A. (2002). Handbook of medicinal herbs. New York: CRC Press.

    Book  Google Scholar 

  130. Sereshti, H., Karimi, M., & Samadi, S. (2009). Application of response surface method for optimization of dispersive liquid–liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil. Journal of Chromatography, 1216(2), 198–204.

    Article  CAS  PubMed  Google Scholar 

  131. Ebrahimzadeh, M., Nabavia, F., Bahramian, F., & Bekhradnia, A. R. (2010). Antioxidant and free radical scavenging activity of H officinalis Var angustifolius, V odorata, B hyrcana and C speciosum. Pakistan Journal of Pharmaceutical Sciences, 23, 29–34.

    CAS  PubMed  Google Scholar 

  132. Vishal, A., Parveen, K., Pooja, S., Kannappan, N., & Kumar, S. (2009). Diuretic, laxative and toxicity studies of Viola odorata aerial parts. Pharmacology Online, 1, 739–748.

    Google Scholar 

  133. Karimifar, K., Alipanah, H., & Bigdeli, M. R. (2017). Effect of Viola odorata extract on reducing infarct volume and neurological defects in focal cerebral ischemia animal model. Journal of Mazandaran University of Medical Sciences, 27(148), 1–11.

    Google Scholar 

  134. Beigomi, M., Mohammadifar, M. A., Hashemi, M., Senthil, K., & Valizadeh, M. (2014). Biochemical and rheological characterization of a protease from fruits of Withania coagulans with a milk-clotting activity. Food Science and Biotechnology, 23(6), 1805–1813.

    Article  CAS  Google Scholar 

  135. Glotter, E. (1991). Withanolides and related ergostane-type steroids. Natural Product Reports, 8(4), 415–440.

    Article  CAS  PubMed  Google Scholar 

  136. Budhiraja, R., Garg, K., Sudhir, S., & Arora, B. (1986). Protective effect of 3-ss-hydroxy-2, 3-dihydrowithanolide F against CCl4-induced hepatotoxicity. Planta Medica, 52(01), 28–29.

    Article  Google Scholar 

  137. Choudhary, M. I., Nawaz, S. A., Lodhi, M. A., Ghayur, M. N., Jalil, S., Riaz, N., et al. (2005). Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochemical and Biophysical Research Communications, 334(1), 276–287.

    Article  CAS  PubMed  Google Scholar 

  138. Mohanty, I., Arya, D. S., Dinda, A., Talwar, K. K., Joshi, S., & Gupta, S. K. (2009). Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic & Clinical Pharmacology & Toxicology, 94(4), 184–190.

    Article  Google Scholar 

  139. Sarbishegi, M., Heidari, Z., & Sagheb, H. M. (2016). Withania coagulans extract attenuates histopathological alteration and apoptosis in rat brain cortex following ischemia/reperfusion injury. Gene, Cell and Tissue, 3(1), 1–7.

    Article  Google Scholar 

  140. Wang, W., & Wang, Z. (2005). Studies of commonly used traditional medicine-ginger. China Journal of Chinese Materia Medica, 30(20), 1569–1573.

    CAS  PubMed  Google Scholar 

  141. Tapsell, L. C., Hemphill, I., Cobiac, L., Sullivan, D. R., Fenech, M., Patch, C. S., et al. (2006). Health benefits of herbs and spices: The past, the present, the future. The Medical Journal of Australia, 185(S4), S1–S24.

    Article  PubMed  Google Scholar 

  142. Mascolo, N., Jain, R., Jain, S., & Capasso, F. (1989). Ethnopharmacologic investigation of ginger (Zingiber officinale). Journal of Ethnopharmacology, 27(1–2), 129–140.

    Article  CAS  PubMed  Google Scholar 

  143. Ojewole, J. A. (2006). Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Research, 20(9), 764–772.

    Article  PubMed  Google Scholar 

  144. Wattanathorn, J., Jittiwat, J., Tongun, T., Muchimapura, S., & Ingkaninan, K. (2011). Zingiber officinale mitigates brain damage and improves memory impairment in focal cerebral ischemic rat. Evidence-based Complementary and Alternative Medicine, 2012, 1–8.

    Article  Google Scholar 

  145. Asgarpanah, J., & Haghighat, E. (2012). Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. African Journal of Pharmacy and Pharmacology, 6(31), 2332–2339.

    Article  Google Scholar 

  146. Adzu, B., Amos, S., Amizan, M., & Gamaniel, K. (2003). Evaluation of the antidiarrhoeal effects of Zizyphus spina-christi stem bark in rats. Acta Tropica, 87(2), 245–250.

    Article  CAS  PubMed  Google Scholar 

  147. Setorki, M., & Hooshmandi, Z. (2017). Neuroprotective effect of Ziziphus spina-christi on brain injury induced by transient global cerebral ischemia and reperfusion in rat. Bangladesh Journal of Pharmacology, 12(1), 69–76.

    Article  Google Scholar 

Download references

Conflict of Interest

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safdari, M.R. et al. (2021). Role of Herbal Medicines in the Management of Brain Injury. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_19

Download citation

Publish with us

Policies and ethics

Navigation