Pathophysiology and Clinical Implications of the Veno-arterial PCO2 Gap

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2021

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1232 Accesses

Abstract

Circulatory shock is common among patients admitted to the intensive care unit and, despite improved medical management, remains associated with a high mortality rate. Under these circumstances, tissue perfusion and cellular oxygenation are commonly assessed by blood lactate and venous oxygen saturation (SvO2). Venous-to-arterial difference in CO2 partial pressure (Pv-aCO2 gap) is another parameter, which can easily be obtained (through simultaneous sampling of central or mixed venous and arterial blood) and appears to have prognostic abilities in several types of shock. The Pv-aCO2 gap can provide insight into the adequacy of cardiac output relative to oxygen consumption and represents a link between the macro- and microcirculation. Correct interpretation of the Pv-aCO2 gap at the bedside, however, requires an understanding of CO2 physiology and of elements modulating the relationship between CO2 content and its partial pressure (Haldane effect, acidosis, anemia...). In this chapter, we review the physiological basis underlying CO2 production, transport and blood content, as well as the clinical implications of an increased Pv-aCO2 gap. We review the evidence linking Pv-aCO2 gap to clinical outcomes and, finally, we propose algorithms guiding the interpretation of Pv-aCO2 in different types of dysoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gavelli F, Teboul JL, Monnet X. How can CO2-derived indices guide resuscitation in critically ill patients? J Thorac Dis. 2019;11(Suppl 11):S1528–S37.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715.

    Article  CAS  PubMed  Google Scholar 

  3. Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1988;65:473–7.

    Article  CAS  PubMed  Google Scholar 

  4. Dash RK, Bassingthwaighte JB. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng. 2004;32:1676–93.

    Article  PubMed  Google Scholar 

  5. Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monitor Comput. 2012;26:367–74.

    Article  Google Scholar 

  6. van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO(2) difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39:1034–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71.

    Article  CAS  PubMed  Google Scholar 

  8. Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.

    Article  CAS  PubMed  Google Scholar 

  9. Denault A, Guimond JG. Does measuring veno-arterial carbon dioxide difference compare to predicting a hockey game's final score? Can J Anesthesia. 2021;68:445–53.

    Article  CAS  Google Scholar 

  10. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.

    Article  CAS  PubMed  Google Scholar 

  11. Robin E, Futier E, Pires O, Fleyfel M, Tavernier B, Lebuffe G, et al. Central venous-to-arterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Crit Care. 2015;19:227.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–20.

    Article  CAS  PubMed  Google Scholar 

  13. Ducrocq N, Kimmoun A, Levy B. Lactate or ScvO2 as an endpoint in resuscitation of shock states? Minerva Anestesiol. 2013;79:1049–58.

    CAS  PubMed  Google Scholar 

  14. Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med. 1998;26:979–80.

    Article  CAS  PubMed  Google Scholar 

  15. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.

    Article  CAS  PubMed  Google Scholar 

  16. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30:379–84.

    Article  PubMed  Google Scholar 

  17. Dubin A, Estenssoro E, Murias G, Pozo MO, Sottile JP, Baran M, et al. Intramucosal-arterial Pco2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma. 2004;57:1211–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrara G, Kanoore Edul VS, Martins E, Canales HS, Canullan C, Murias G, et al. Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage. J Appl Physiol. 2016;120:1132–40.

    Article  CAS  PubMed  Google Scholar 

  19. Liaudet L, Oddo M. Role of poly(adenosine diphosphate-ribose) polymerase 1 in septic peritonitis. Curr Opin Crit Care. 2003;9:152–8.

    Article  Google Scholar 

  20. Fink MP. Cytopathic hypoxia and sepsis: is mitochondrial dysfunction pathophysiologically important or just an epiphenomenon. Pediatr Crit Care Med. 2015;16:89–91.

    Article  Google Scholar 

  21. Mik EG, Balestra GM, Harms FA. Monitoring mitochondrial PO2: the next step. Curr Opin Crit Care. 2020;26:289–95.

    Article  PubMed  Google Scholar 

  22. Andreis DT, Mallat J, Tettamanti M, Chiarla C, Giovannini I, Gatti S, et al. Increased ratio of P[v-a]CO2 to C[a-v]O2 without global hypoxia: the case of metformin-induced lactic acidosis. Respir Physiol Neurobiol. 2021;285:103586.

    Article  CAS  PubMed  Google Scholar 

  23. Waldauf P, Jiroutkova K, Duska F. Using pCO2 Gap in the differential diagnosis of hyperlactatemia outside the context of sepsis: a physiological review and case series. Crit Care Res Pract. 2019;2019:5364503.

    PubMed Central  PubMed  Google Scholar 

  24. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.

    Article  CAS  PubMed  Google Scholar 

  25. Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18:585–9.

    Article  CAS  PubMed  Google Scholar 

  26. Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.

    Article  PubMed  Google Scholar 

  27. Ospina-Tascon GA, Bautista-Rincon DF, Umana M, Tafur JD, Gutierrez A, Garcia AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17:R294.

    Article  PubMed Central  PubMed  Google Scholar 

  28. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.

    Article  PubMed  Google Scholar 

  29. Revelly JP, Liaudet L, Frascarolo P, Joseph JM, Martinet O, Markert M. Effects of norepinephrine on the distribution of intestinal blood flow and tissue adenosine triphosphate content in endotoxic shock. Crit Care Med. 2000;28:2500–6.

    Article  CAS  PubMed  Google Scholar 

  30. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  PubMed  Google Scholar 

  31. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32:516–23.

    Article  PubMed  Google Scholar 

  32. Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42:211–21.

    Article  CAS  PubMed  Google Scholar 

  33. De Backer D. Is microcirculatory assessment ready for regular use in clinical practice? Curr Opin Crit Care. 2019;25:280–4.

    Article  PubMed  Google Scholar 

  34. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.

    Article  PubMed  Google Scholar 

  35. Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31:371–80.

    Article  PubMed  Google Scholar 

  36. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"! Intensive Care Med. 2013;39:1653–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Al Duhailib Z, Hegazy AF, Lalli R, Fiorini K, Priestap F, Iansavichene A, et al. The use of central venous to arterial carbon dioxide tension gap for outcome prediction in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2020;48:1855–61.

    Article  PubMed  Google Scholar 

  38. Diaztagle Fernandez JJ, Rodriguez Murcia JC, Sprockel Diaz JJ. Venous-to-arterial carbon dioxide difference in the resuscitation of patients with severe sepsis and septic shock: A systematic review. Med Intensiva. 2017;41:401–10.

    CAS  PubMed  Google Scholar 

  39. Mukai A, Suehiro K, Kimura A, Funai Y, Matsuura T, Tanaka K, et al. Comparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J Clin Monitor Comput. 2020;34:41–53.

    Article  Google Scholar 

  40. Zante B, Reichenspurner H, Kubik M, Schefold JC, Kluge S. Increased admission central venous-arterial CO2 difference predicts ICU-mortality in adult cardiac surgery patients. Heart Lung. 2019;48:421–7.

    Article  Google Scholar 

  41. Huette P, Beyls C, Mallat J, Martineau L, Besserve P, Haye G, et al. Central venous-to-arterial CO2 difference is a poor tool to predict adverse outcomes after cardiac surgery: a retrospective study. Can J Anaesth. 2021;68:467–76.

    Article  CAS  Google Scholar 

  42. Mazzeffi M, Zivot J, Buchman T, Halkos M. In-hospital mortality after cardiac surgery: patient characteristics, timing, and association with postoperative length of intensive care unit and hospital stay. Ann Thorac Surg. 2014;97:1220–5.

    Article  Google Scholar 

  43. Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. 2016;5:47–56.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Saludes P, Proenca L, Gruartmoner G, Ensenat L, Perez-Madrigal A, Espinal C, et al. Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia: A limiting factor, or an additional marker of severity in shock? J Clin Monitor Comput. 2017;31:1203–11.

    Article  CAS  Google Scholar 

  45. Orbegozo Cortes D, Puflea F, Donadello K, Taccone FS, Gottin L, Creteur J, et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res. 2015;98:23–8.

    Article  CAS  PubMed  Google Scholar 

  46. Mallat J, Mohammad U, Lemyze M, Meddour M, Jonard M, Pepy F, et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann Intensive Care. 2017;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ltaief, Z., Schneider, A.G., Liaudet, L. (2021). Pathophysiology and Clinical Implications of the Veno-arterial PCO2 Gap. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2021. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-73231-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73231-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73230-1

  • Online ISBN: 978-3-030-73231-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation