A Selective Review on Statistical Techniques for Big Data

  • Chapter
  • First Online:
Modern Statistical Methods for Health Research

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

To meet the big data challenges, many new statistical tools have been developed in recent years. In this review, we summarize some of these approaches to give an overview of the current state of the development. We will focus on the case that the number of observations is much larger than the dimension of the unknown parameters, although we will mention some investigations related to the high-dimensional data. We will discuss methods using subsamples as well as methods processing the whole data piece by piece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ai, M., Yu, J., Zhang, H., Wang, H.Y.: Optimal subsampling algorithms for big data regressions. Stat. Sin. (2019). https://doi.org/10.5705/ss.202018.0439

  2. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In: Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, pp. 557–563 (2006)

    Google Scholar 

  3. Ailon, N., Chazelle, B.: The fast Johnson–Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual BCH codes. Discrete Comput. Geom. 42(4), 615 (2009)

    Google Scholar 

  5. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging LAPACK’s least-squares solver. SIAM J. Sci. Comput. 32, 1217–1236 (2010)

    Article  MathSciNet  Google Scholar 

  6. Battey, H., Fan, J., Liu, H., Lu, J., Zhu, Z.: Distributed testing and estimation under sparse high dimensional models. Ann. Stat. 46(3), 1352 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., **e, M.-g.: A split-and-conquer approach for analysis of extraordinarily large data. Stat. Sin. 24, 1655–1684 (2014)

    Google Scholar 

  8. Chen, S., Varma, R., Singh, A., Kovačcević, J.: A statistical perspective of sampling scores for linear regression. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1556–1560. IEEE, Piscataway (2016)

    Google Scholar 

  9. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for l 2 regression and applications. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 1127–1136. Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Google Scholar 

  10. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlos, T.: Faster least squares approximation. Numer. Math. 117, 219–249 (2011)

    Article  MathSciNet  Google Scholar 

  11. Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P.: Faster approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res. 13, 3475–3506 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  13. Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014)

    Article  Google Scholar 

  14. Fithian, W., Hastie, T.: Local case-control sampling: Efficient subsampling in imbalanced data sets. Ann. Stat. 42(5), 1693 (2014)

    Article  MathSciNet  Google Scholar 

  15. Han, L., Tan, K.M., Yang, T., Zhang, T.: Local uncertainty sampling for large-scale multiclass logistic regression. Ann. Stat. 48(3),1770–1788 (2020)

    Article  MathSciNet  Google Scholar 

  16. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz map**s into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  Google Scholar 

  17. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, pp. 315–323 (2013)

    Google Scholar 

  18. Katzfuss, M.: A multi-resolution approximation for massive spatial datasets. J. Am. Stat. Assoc. 112(517), 201–214 (2017)

    Article  MathSciNet  Google Scholar 

  19. Klotz, J.H.: Updating simple linear regression. Stat. Sin., 15, 399–403 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Laney, D.: 3d data management: Controlling data volume, velocity and variety. META Group Res. Note 6(70), 1 (2001)

    Google Scholar 

  21. Liang, F., Cheng, Y., Song, Q., Park, J., Yang, P.: A resampling-based stochastic approximation method for analysis of large geostatistical data. J. Am. Stat. Assoc. 108(501), 325–339 (2013)

    Article  MathSciNet  Google Scholar 

  22. Lin, N., **e, R.: Aggregated estimating equation estimation. Stat. Interface 4, 73–83 (2011)

    Article  MathSciNet  Google Scholar 

  23. Luo, L., Song, P.X.-K.: Renewable estimation and incremental inference in generalized linear models with streaming data sets. J. R. Stat. Soc. B (Stat. Methodol.) 82(1), 69–97 (2020)

    Google Scholar 

  24. Ma, P., Mahoney, M.W., Yu, B.: A statistical perspective on algorithmic leveraging. J. Mach. Learn. Res. 16(1), 861–911 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Ma, P., Zhang, X., **ng, X., Ma, J., Mahoney, M.: Asymptotic analysis of sampling estimators for randomized numerical linear algebra algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 1026–1035 (2020)

    Google Scholar 

  26. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3(2), 123–224 (2011)

    MATH  Google Scholar 

  27. Martinsson, P.-G., Tropp. J.: Randomized numerical linear algebra: Foundations & algorithms (2020). Preprint. ar**v:2002.01387

    Google Scholar 

  28. Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm. In: Advances in Neural Information Processing Systems, pp. 1017–1025 (2014)

    Google Scholar 

  29. Schifano, E.D., Wu, J., Wang, C., Yan, J., Chen, M.-H.: Online updating of statistical inference in the big data setting. Technometrics 58(3), 393–403 (2016)

    Article  MathSciNet  Google Scholar 

  30. Shang, Z., Cheng, G.: Computational limits of a distributed algorithm for smoothing spline. J. Mach. Learn. Res. 18(1), 3809–3845 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Toulis, P., Airoldi, E.M., et al.: Asymptotic and finite-sample properties of estimators based on stochastic gradients. Ann. Stat. 45(4), 1694–1727 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.Y.: Divide-and-conquer information-based optimal subdata selection algorithm. J. Stat. Theory Pract. 13(3), 46 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wang, H.Y.: More efficient estimation for logistic regression with optimal subsamples. J. Mach. Learn. Res. 20(132), 1–59 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Wang, H., Ma, Y.: Optimal subsampling for quantile regression in big data. Biometrika, 108(1), 99–112 (2021)

    Article  MathSciNet  Google Scholar 

  35. Wang, C., Chen, X., Smola, A.J., **ng, E.P.: Variance reduction for stochastic gradient optimization. In: Advances in Neural Information Processing Systems, pp. 181–189 (2013)

    Google Scholar 

  36. Wang, Y., Yu, A.W., Singh, A.: On computationally tractable selection of experiments in measurement-constrained regression models. J. Mach. Learn. Res. 18(1), 5238–5278 (2017)

    MathSciNet  Google Scholar 

  37. Wang, C., Chen, M.-H., Wu, J., Yan, J., Zhang, Y., Schifano, E.: Online updating method with new variables for big data streams. Canad. J. Stat. 46(1), 123–146 (2018)

    Article  MathSciNet  Google Scholar 

  38. Wang, H.Y., Zhu, R., Ma, P.: Optimal subsampling for large sample logistic regression. J. Am. Stat. Assoc. 113(522), 829–844 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wang, H.Y., Yang, M., Stufken, J.: Information-based optimal subdata selection for big data linear regression. J. Am. Stat. Assoc. 114(525), 393–405 (2019)

    Article  MathSciNet  Google Scholar 

  40. Wang, Y., Hong, C., Palmer, N., Di, Q., Schwartz, J., Kohane, I., Cai, T.: A fast divide-and-conquer sparse Cox regression. Biostatistics. 22(2), 381–401 (2021)

    Article  MathSciNet  Google Scholar 

  41. **e, R., Wang, Z., Bai, S., Ma, P., Zhong, W.: Online decentralized leverage score sampling for streaming multidimensional time series. Proc. Mach. Learn. Res. 89, 2301 (2019)

    Google Scholar 

  42. Yao, Y., Wang, H.Y.: Optimal subsampling for softmax regression. Stat. Papers 60, 585–599 (2018)

    Article  MathSciNet  Google Scholar 

  43. Yu, J., Wang, H., Ai, M., Zhang, H.: Optimal distributed subsampling for maximum quasi-likelihood estimators with massive data. J. Am. Stat. Assoc., 1–12 (2020). https://doi.org/10.1080/01621459.2020.1773832s

  44. Zhang, Y., Duchi, J., Wainwright, M.: Divide and conquer kernel ridge regression: A distributed algorithm with minimax optimal rates. J. Mach. Learn. Res. 16(1), 3299–3340 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, P., Zhang, T.: Stochastic optimization with importance sampling for regularized loss minimization. In International Conference on Machine Learning, pp. 1–9 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiYing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, Y., Wang, H. (2021). A Selective Review on Statistical Techniques for Big Data. In: Zhao, Y., Chen, (.DG. (eds) Modern Statistical Methods for Health Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-72437-5_11

Download citation

Publish with us

Policies and ethics

Navigation