Metaheuristic Algorithms: Theory and Applications

  • Chapter
  • First Online:
Research in Computer Science in the Bulgarian Academy of Sciences

Part of the book series: Studies in Computational Intelligence ((SCI,volume 934))

  • 371 Accesses

Abstract

Metaheuristic is a collective concept of a series of intelligent strategies to enhance the efficiency of heuristic procedures. Metaheuristic algorithms are becoming an important part of modern optimization. A wide range of metaheuristic algorithms have emerged over the last two decades, and are becoming increasingly popular. This article presents a brief overview of the scientific research on new metaheuristic algorithms, as well as their modifications and hybridizations and its various fields of application. The results presented are limited to those proposed by scientists from the Bulgarian Academy of Sciences for the last 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adonyi, R., Shopova, E.G., Vaklieva-Bancheva, N.G.: Optimal schedule of the dairy manufacture. Chem. Biochem. Eng. Quart. 23(2), 231–237 (2009)

    Google Scholar 

  2. Adonyi, R., Kirilova, E.G., Vaklieva-Bancheva, N.G.: Systematic approach for designing and activities scheduling of supply chain network. Bulgar. Chem. Commun. 45(3), 288–295 (2013)

    Google Scholar 

  3. Angelov, M., Kostov, G., Ignatova, M., Koprinkova-Hristova, P., Lyubenova, V., Popova, S.: Kinetics and Control of Bioprocesses, 1st edn. Agency 7D, Plovdiv (2012) (in Bulgarian)

    Google Scholar 

  4. Angelova, M., Tzonkov, S., Pencheva, T.: Parameter identification of a fed-batch cultivation of S. cerevisiae using genetic algorithms. Serdica J. Comput. 4(1), 11–18 (2010)

    Google Scholar 

  5. Angelova, M., Roeva, O., Pencheva, T.: Cuckoo search algorithm for parameter identification of fermentation process model. In: Lecture Notes in Computer Science, vol. 11189, pp. 39–47 (2019)

    Google Scholar 

  6. Angelova, M., Roeva, O., Pencheva, T.: Artificial bee colony algorithm for parameter identification of fermentation process model. In: Lecture Notes in Electrical Engineering, vol. 574, pp. 317–323 (2019)

    Google Scholar 

  7. Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems, vol. 5, pp. 419–424 (2015)

    Google Scholar 

  8. Angelova, M., Pencheva, T.: How to assess multi-population genetic algorithms performance using intuitionistic fuzzy logic. In: Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, vol. 793, pp. 23–35 (2018)

    Google Scholar 

  9. Angelova, M., Pencheva, T.: Genetic operators significance assessment in simple genetic algorithm. In: Lecture Notes in Computer Science, vol. 8353, pp. 223–231 (2014)

    Google Scholar 

  10. Angelova, M., Pencheva, T.: Genetic operators’ significance assessment in multi-population genetic algorithms. Int. J. Metaheurist. 3(2), 162–173 (2014)

    Article  Google Scholar 

  11. Angelova, M., Pencheva, T.: Intercriteria analysis approach for comparison of simple and multi-population genetic algorithms performance. In: Studies in Computational Intelligence, vol. 795, pp. 117–130 (2019)

    Google Scholar 

  12. Angelova, M., Pencheva, T.: Intercriteria analysis of multi-population genetic algorithms performance. In: Annals of Computer Science and Information Systems, vol. 13, pp. 77–82 (2017)

    Google Scholar 

  13. Angelova, M., Atanassov, K., Pencheva, T.: Intuitionistic fuzzy logic as a tool for quality assessment of genetic algorithms performances. In: Studies in Computational Intelligence, vol. 470, pp. 1–13 (2013)

    Google Scholar 

  14. Angelova, M., Tzonkov, S., Pencheva, T.: Modified multi-population genetic algorithm for yeast fed-batch cultivation parameter identification. Int. J. Bioautomat. 13(4), 163–172 (2009)

    Google Scholar 

  15. Angelova, M., Pencheva, T.: Improvement of multi-population genetic algorithm convergence time. In: Monte Carlo Methods and Applications, pp. 1–9 (2013)

    Google Scholar 

  16. Angelova, M., Atanassov, K., Pencheva, T.: Intuitionistic fuzzy logic based quality assessment of simple genetic algorithm. In: Proceedings of the 16th International Conference on System Theory, Control and Computing (ICSTCC), vol. 2, Sinaia, Romania, October 12–14, 2012

    Google Scholar 

  17. Angelova, M., Atanassov, K., Pencheva, T.: Multi-population genetic algorithm quality assessment implementing intuitionistic fuzzy logic. In: Proceedings of the Federated Conference on Computer Sciences and Information Systems—FEDCSIS 2012, Workshop on Computational Optimization—WCO’2012, Wrocław, Poland, pp. 365–370 (2012)

    Google Scholar 

  18. Angelova, M., Atanassov, K., Pencheva, T.: Intuitionistic fuzzy estimations of purposeful model parameters genesis. In: IEEE 6th International Conference “Intelligent Systems”, Sofia, Bulgaria, pp. 206–211 (2012)

    Google Scholar 

  19. Angelova, M., Melo-Pinto, P., Pencheva, T.: Modified simple genetic algorithms improving convergence time for the purposes of fermentation process parameter identification. WSEAS Trans. Syst. 11(7), 256–267 (2012)

    Google Scholar 

  20. Angelova, M., Pencheva, T.: Purposeful model parameter genesis in multi-population genetic algorithm. In: 10-th National Young Scientific-Practical Session, Sofia, Bulgaria, pp. 250–254 (2012) (in Bulgarian)

    Google Scholar 

  21. Angelova, M., Pencheva, T.: Quality assessment procedure for genetic algorithms performance using intuitionistic fuzzy logics. In: 10-th National Young Scientific-Practical Session, Sofia, Bulgaria, pp. 244–249 (2012) (in Bulgarian)

    Google Scholar 

  22. Angelova, M., Atanassov, K., Pencheva, T.: Purposeful model parameters genesis in simple genetic algorithms. Comput. Math. Appl. 64, 221–228 (2012)

    Article  Google Scholar 

  23. Angelova, M., Pencheva, T.: Algorithms improving convergence time in parameter identification of fed-batch cultivation. Comptes rendus de l’Académie bulgare des Sciences 65(3), 299–306 (2012)

    MATH  Google Scholar 

  24. Angelova, M., Pencheva, T.: Sensitivity analysis for the purposes of parameter identification of a S. cerevisiae fed-batch cultivation. In: Lecture Notes in Computer Science, vol. 7116, pp. 165–172 (2012)

    Google Scholar 

  25. Angelova, M., Pencheva, T.: Tuning genetic algorithm parameters to improve convergence time. Int. J. Chem. Eng. Article ID 646917 (2011)

    Google Scholar 

  26. Angelova, M., Tzonkov, S., Pencheva, T.: Genetic algorithms based parameter identification of yeast fed-batch cultivation. In: Lecture Notes in Computer Science, vol. 6046, pp. 224–231 (2011)

    Google Scholar 

  27. Angelova, M., Pencheva, T.: An investigation of the effect of the genetic operators execution sequence on the fermentation process parameter identification. In: 8th National Young Scientific-Practical Session, Sofia, Bulgaria, pp. 50–55 (2010) (in Bulgarian)

    Google Scholar 

  28. Atanassov, K., Pencheva, T.: Generalized net model of simple genetic algorithm modifications. Issues in Intuitionistic Fuzzy Sets and Generalized Nets 10, 97–106 (2013)

    Google Scholar 

  29. Bartczuk, L., Przybyl, A., Koprinkova-Hristova, P.: New method for non-linear correction modelling of dynamic objects with genetic programming. In: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), vol. 9120, pp. 318–329 (2015)

    Google Scholar 

  30. Bartczuk, L., Przybyl, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8467 LNAI (PART 1), pp. 169–180 (2014)

    Google Scholar 

  31. Bartczuk, L., Lapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9693, pp. 262–278 (2016)

    Google Scholar 

  32. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    Book  MATH  Google Scholar 

  33. Castillo, O., Ramirez, E., Roeva, O.: Water cycle algorithm augmentation with fuzzy and intuitionistic fuzzy dynamic adaptation of parameters. Notes on Intuitionistic Fuzzy Sets 23(1), 79–94 (2017)

    MATH  Google Scholar 

  34. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  35. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose algorithm appearing superior to simulated annealing. J. Comput. Phys. 90, 161–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012)

    Article  Google Scholar 

  37. Evtimov, G., Fidanova, S.: Ant Colony optimization algorithm for 1D cutting stock problem. In: Gueorguiev, K., Gueorguiev, I. (eds.) Advanced Computing in Industrial Mathematics, Studies of Computational Intelligence, Springer, vol. 728, pp. 25–31 (2018)

    Google Scholar 

  38. Fidanova, S.: Evolutionary algorithm for multiple knapsack problem. In: International Conference Parallel Problems Solving from Nature, Real World Optimization Using Evolutionary Computing, Granada, Spain (2002)

    Google Scholar 

  39. Fidanova, S.: ACO algorithm for MKP using various heuristic information. In: 5th International Conference of Numerical Methods and Applications, Lecture Notes in Computer Science, vol. 2542, pp. 434–440 (2003)

    Google Scholar 

  40. Fidanova, S.: Monte Carlo method for multiple knapsack problem. In: International Conference of Large-Scale Scientific Computing, Lecture Notes in Computer Science, vol. 2907, pp. 136–143 (2004)

    Google Scholar 

  41. Fidanova, S.: Ant colony optimization for multiple knapsack problem and model bias. In: NAA’04, Lecture Notes in Computer Sciences, Springer, vol. 3401, pp. 282–289 (2005)

    Google Scholar 

  42. Fidanova, S.: Simulated annealing: A Monte Carlo method for GPS surveying. In: Computational Science–2006, Lecture Notes in Computer Science, vol. 3991, pp. 1009–1012 (2006)

    Google Scholar 

  43. Fidanova, S.: Ant colony optimization and multiple knapsack problem. In: Renard, J.-P. (ed.) Handbook of Research on Nature Inspired Computing for Economics and Management, Chapter 33, Idea Group Inc., pp. 498–509 (2006)

    Google Scholar 

  44. Fidanova, S.: Heuristics for multiple knapsack problem. In: IADIS Applied Computing 2005 Conference. Algavre, Portugal, pp. 255–260 (2005)

    Google Scholar 

  45. Fidanova, S., Durchova, M.: Ant algorithm for grid scheduling problem. In: Large Scale Computing, Lecture Notes in Computer Science, vol. 3743, pp. 405–412 (2006)

    Google Scholar 

  46. Fidanova, S.: Hybrid heuristics algorithms for GPS surveying problem. In: Numerical Methods and Applications, Lecture Notes in Computer Science, vol. 4310, pp. 239–248 (2007)

    Google Scholar 

  47. Fidanova, S.: Simulated annealing for grid scheduling problem. In: IEEE Computer Society, Proceedings of IEEE JVA International Symposium on Modern Computing, Sofia, Bulgaria, pp. 41–45 (2006)

    Google Scholar 

  48. Fidanova, S.: An heuristic method for GPS surveying problem. In: Computational Science, Lecture Notes in Computer Science, vol. 4490, pp. 1084–1090 (2007)

    Google Scholar 

  49. Fidanova, S.: Probabilistic model of an colony optimization for multiple knapsack problem. In: Large Scale Scientific Computing, Lecture Notes in Computer Science, vol. 4818, pp. 545–552 (2008)

    Google Scholar 

  50. Fidanova, S.: MMAS and ACS for GPS surveying problem. In: Proceeding of International Conference on Evolutionary Computing, Sofia, Bulgaria, pp. 87–91 (2008)

    Google Scholar 

  51. Fidanova, S.: Metaheuristic method for transport modelling and optimization. In: Margenov, S., Angelova, G., Agre, G. (eds.) Innovative Approaches and Solutions in Advanced Intelligent Systems, Studies in Computational Intelligence, Chapter 19, Springer, Germany, vol. 648, pp. 295–302 (2016)

    Google Scholar 

  52. Fidanova, S., Saleh, H.A.: Ant colony optimization for scheduling the surveying activities of satellite positioning networks. In: International Conference on Information Systems and Data Grids, Sofia, Bulgaria, pp. 43–54

    Google Scholar 

  53. Fidanova, S., Saleh, H.A.: Efficient Tabu search procedures for the GPS surveying. In: Proceedings of Metaheuristic International Conference, Vienna, pp. 342–347 (2005)

    Google Scholar 

  54. Fidanova, S., Alba, E., Molina, G.: Memetic simulated annealing for GPS surveying problem numerical analysis and applications. In: Lecture Notes in Computer Science, vol. 5434, pp. 281–288 (2009)

    Google Scholar 

  55. Fidanova, S., Alba, E., Molina, G.: Hybrid ACO algorithm for the GPS surveying problem. In: Large Scale Scientific Computing. Lecture Notes in Computer Science, vol. 5910, pp. 318–325 (2010)

    Google Scholar 

  56. Fidanova, S., Atanassov, K., Marinov, P., Parvathi, R.: Ant colony optimization for multiple knapsack problem with controlled start. Int. J. Bioautomat. 13(4), 271–280 (2009)

    Google Scholar 

  57. Fidanova, S., Atanassov, K., Marinov, P.: Start strategies of ACO applied on subset problems. In: Numerical methods and applications, Lecture Notes in Computer Science No. 6046, Springer, Germany, pp. 248–255 (2011)

    Google Scholar 

  58. Fidanova, S., Atanassov, K., Marinov, P.: Intuitionistic fuzzy estimation of the ant colony optimization starting points. In: Large Scale Scientific Computing, Lecture Notes in Computer Science, vol. 7116, pp. 219–226 (2012)

    Google Scholar 

  59. Fidanova, S., Atanassov, K.: Flaying ant colony optimization algorithm for combinatorial optimization. Studia Informatica, J. Polish Inf. Soc. 38(4), 31–40 (2018)

    Google Scholar 

  60. Fidanova, S., Shindarov, M., Marinov, P.: Wireless sensor positioning ACO algorithm. In: Atanassov, K., Kasparzik, J. (eds.) Studies of Computational Intelligence, Recent Contributions in Intelligent Systems, Studies of Computational Intelligence, vol. 657, book Chapter 3, pp. 33–44 (2017)

    Google Scholar 

  61. Fidanova, S., Shindarov, M., Marinov, P.: Mono-objective algorithm for wireless sensor layout. In: Proceedings of OMCO-NET Conference, Southempton, UK, pp. 57–63 (2012)

    Google Scholar 

  62. Fidanova, S., Shindarov, M., Marinov, P.: Multi-objective ant algorithm for wireless sensor network positioning. Proc. Bulgar. Acad. Sci. 66(3), 353–360 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Fidanova, S., Shindarov, M., Marinov, P.: Optimal sensor layout using multi-objective metaheuristic. In: Proceedings of International Conference of Information Systems and Grid Technologies, Sofia, Bulgaria, St. Kliment Ohridski University Press, pp. 114–122 (2011)

    Google Scholar 

  64. Fidanova, S., Marinov, P., Atanassov, K.: Sensitivity analysis of ACO start strategies for subset problems. In: Numerical Methods and Applications, Lecture Notes in Computer Science, vol. 6046, pp. 256–263 (2011)

    Google Scholar 

  65. Fidanova, S., Marinov, P., Alba, E.: ACO for optimal sensor layout. In: Filipe, J., Kacprzyk, J. (eds.) Proceedings of International Conference on Evolutionary Computing, Valencia, Spain, SciTePress—Science and Technology Publications Portugal, pp. 5–9 (2010)

    Google Scholar 

  66. Fidanova, S., Marinov, P., Alba, E.: Ant algorithm for optimal sensor deployment. In: Madani, K., Correia, A.-D., Rosa, A., Filipe, J. (eds.) Computational Intelligence, Studies in Computational Intelligence, vol. 399, pp. 21–29 (2012)

    Google Scholar 

  67. Fidanova, S., Marinov, P.: Influence of the number of ants on mono-objective ant colony optimization algorithm for wireless sensor network layout. In: Proceedings of BGSIAM’12, Sofia, Bulgaria, pp. 59–66 (2012)

    Google Scholar 

  68. Fidanova, S., Marinov, P., Alba, E.: Wireless sensor network layout. In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo methods and applications, Chapter 10, De Gruyter, Berlin, Germany, pp. 87–96 (2012)

    Google Scholar 

  69. Fidanova, S., Marinov, P.: Influence of the parameter R on ACO start strategies. In: Proceedings of BGSIAM ’11, Sofia, Bulgaria, pp. 38–43

    Google Scholar 

  70. Fidanova, S., Marinov, P.: Ant colony optimization start strategies performance according some of the parameters. In: Dimov, I., Farago, I., Vulkov, L. (eds.) Numerical Analysis and Applications, Lecture Notes in Computer Sciences, Springer, Germany, vol. 8236, pp. 287–294 (2013)

    Google Scholar 

  71. Fidanova, S., Marinov, P.: Number of ants versus number of iterations on ant colony optimization algorithm for wireless sensor layout. In: Proceedings of International Conference on Robotics Automation and Mechatronics, RAM 2013, Bankya, Bulgaria, pp. 90–93 (2013)

    Google Scholar 

  72. Fidanova, S., Marinov, P., Paprzycki, M.: Influence of the number of ants on multy-objective ant colony optimization algorithm for wireless sensor network layout. In: Large-Scale Scientific Computing, Lecture Notes in Computer Science, vol. 8353, pp. 208–215 (2014)

    Google Scholar 

  73. Fidanova, S., Marinov, P., Paprzycki, M.: Multi-objective ACO algorithm for WSN layout: performance according number of ants. J. Metaheurist. 3(2), 149–161 (2014)

    Article  Google Scholar 

  74. Fidanova, S., Marinov, P., Atanassov, K.: New estimations of ant colony optimization start nodes. Int. J. Control Cybernet. 43, 471–486 (2014)

    Google Scholar 

  75. Fidanova, S., Pop, P.: An ant algorithm for the partitioned graph coloring problem. In: Numerical Methods and Applications, Lecture Notes in Computer Science, vol. 8962, pp. 78–84 (2015)

    Google Scholar 

  76. Fidanova, S., Pop, P.: An improved hybrid ant-local search algorithm for the partition graph coloring problem. J. Comput. Appl. Math. 293, 55–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. Fidanova, S., Atanassova, V., Roeva, O.: Ant colony optimization application to GPS surveying problems: InterCriteria analysis. In: Uncertainty and Imprecision in Decision Making and Decision Support: Cross Fertilization, New Models and Applications, Advances in Intelligent Systems and Computing, Springer, vol. 559, pp. 251–264 (2018)

    Google Scholar 

  78. Fidanova, S., Ilcheva, Z.: Application of ants ideas on image edge detection. In: Large Scale Scientific Computing, Lecture Notes in Computer Science, pp. 200–207 (2016)

    Google Scholar 

  79. Fidanova, S., Luque, G., Roeva, O., Paprzycki, M., Gepner, P.: Ant colony optimization algorithm for workforce planning. In: FedCSIS ’2017, IEEE Xplorer, IEEE catalog number CFP1585N-ART, pp. 415–419 (2017)

    Google Scholar 

  80. Fidanova, S., Luque, G., Roeva, O., Ganzha, M.: Ant colony optimization algorithm for workforce planning: influence of the evaporation parameter. In: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, vol. 8859747, pp. 177–181

    Google Scholar 

  81. Fidanova, S., Roeva, O.: Influence of ant colony optimization parameters on the algorithm performance. In: Large Scale Scientific Computing, Lecture Notes in Computer Science, vol. 10665, pp. 358–365 (2018)

    Google Scholar 

  82. Fidanova, S., Roeva, O., Luque, G.: Ant colony optimization algorithm for workforce planning: influence of the algorithm parameters. In: Studies of Computational Intelligence, vol. 793, pp. 119–128 (2019)

    Google Scholar 

  83. Fidanova, S., Roeva, O., Ganzha, M.: ACO for parameter settings of E. coli fed-batch cultivation model. In: Proceedings of FedCSIS 2012, IEEE Xplorer, pp. 407–414

    Google Scholar 

  84. Fidanova, S., Roeva, O., Mucherino, A., Kapanova, K.: InterCriteria analysis of ant algorithm with environment change for GPS surveying problem. In: Dichev, C., Agre, G. (eds.) AIMSA 2016, LNAI, vol. 9883, pp. 271–278 (2016)

    Google Scholar 

  85. Fidanova, S., Roeva, O., Ganzha, M.: ACO and GA for parameter settings of E. coli fed-batch cultivation model. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. Studies of Computational Intelligence, Springer International Publishing Switzerland, vol. 470, pp. 51–71

    Google Scholar 

  86. Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start strategies. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, pp. 547–550 (2016)

    Google Scholar 

  87. Fidanova, S., Paprzycki, M., Roeva, O.: Hybrid GA-ACO algorithm for a model parameters identification problem. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), WCO 2014, IEEE, Poland, pp. 413–420. https://doi.org/10.15439/2014F373

  88. Fister, I., Fister, Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013)

    Google Scholar 

  89. Georgieva, O., Tzonkov, S.: An analysis of genetic algorithms as parametric identification tool. In: International Symposium “Bioprocess Systems ’2002—BioPS’02”, Sofia, Bulgaria, pp. I.44–I.47

    Google Scholar 

  90. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley Longman, London (2006)

    Google Scholar 

  91. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  92. Ignatova, M., Lyubenova, V., Fernandes, C., Garsia, M., Alonso, A.: Model for control of gluconic acid fermentation by Aspergillus niger and its application for observers design. In: Proceedings of the International Conference “Agricultural and Food Sciences, Processes and Technologies”, 12–13 May Sibiu. Romania, vol. 2, pp. 182–189 (2005)

    Google Scholar 

  93. Ignatova, M., Lyubenova, V.: Control of Biotechnological Processes—New Formalization of Kinetics: Theoretical Aspects and Applications, LAP LAMBERT Academic Publishing, GmbH & Co., Saarbrücken Germany, p. 120 (2011)

    Google Scholar 

  94. Ignatova, M., Lyubenova, V., Angelov, M., Kostov, G.: pH control during continuous prefermentation of yogurt starter culture by strains streptococcus thermophilus 13a and lactobacillus bulgaricus 2–11. Comptes rendus de l’Académie bulgare des Sciences 62(12), 1587–1594 (2009)

    Google Scholar 

  95. Ignatova, M., Lyubenova, V.: Control of class bioprocesses using on-line information of intermediate metabolite production and consumption rates. Acta Universitatis Cibiniensis, Series E: Food Technology 11(1), 3–16 (2007)

    Google Scholar 

  96. Ignatova, M., Lyubenova, V.: Adaptive control of fed-batch process for poly-beta-hydroxybutyrate production by mixed culture. Comptes rendus de l’Académie bulgare des Sciences 60(5), 517 (2007)

    Google Scholar 

  97. Ignatova, M., Lyubenova, V., Eerikäinen, T., Salonen, K., Kiviharju, K.: Software sensor of substrate kinetics and its application for control of alpha-amylase production by Bacillus subtilis. Comptes rendus de l’Académie bulgare des Sciences 61, 1449–1458 (2008)

    Google Scholar 

  98. Ignatova, M., Lyubenova, V., García, M., Vilas, C.: Adaptive linearizing control of gluconic acid fermentation by Aspergillus niger. In: National conference with international participation “Automatics and Informatics”, pp. 3–6 (2006)

    Google Scholar 

  99. Ignatova, M., Lyubenova, V., García, M., Vilas, C., Alonso, A.: Indirect adaptive linearizing control of a class of bioprocesses–estimator tuning procedure. J. Process Control 18(1), 27–35 (2008)

    Article  Google Scholar 

  100. Ivanova, J., Petrova, P., Kirilova, E., Becker, W.: Optimal parameters of a dynamically loaded patch/layer structure against the elastic-brittle interface debonding. Eng. Trans. 65(1), 97–103 (2017)

    Google Scholar 

  101. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Num. Opt. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  102. Karaboga, D.: An idea based on honeybee swarm for numerical optimization. Technical Report TR06. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  103. Kirilova, E.G., Yankova, S., Ilieva, B., Vaklieva-Bancheva, N.G.: Modelling of bioconversion of crude glycerol from biodiesel production by using dynamic artificial neural network. In: Proceedings of the 1st Annual International Conference on Industrial, Systems and Design Engineering, 23th–26th June, 2013, Greece, CD, Athens (2013)

    Google Scholar 

  104. Kirilova, E.G., Vaklieva-Bancheva, N.G.: Modelling of Two-Stage ATAD Bioreactor System by Using Artificial Neural Network. In: Book Series on Computer Aided Chemical Engineering (2012). https://pdfs.semanticscholar.org/3837/6dd042e5faa785fac62928d5cdf6e05586e8.pdf

  105. Kirilova, E.G., Yankova, S., Ilieva, B., Vaklieva-Bancheva, N.G.: A new approach for modeling the biotransformation of crude glycerol by using NARX ANN. J. Chem. Technol. Metallurgy 49(5), 473–478 (2014)

    Google Scholar 

  106. Kirilova, E.G., Vaklieva-Bancheva, N.G., Vladova, R.: Prediction of temperature conditions of autothermal thermophilic aerobic digestion bioreactors at wastewater treatment plants. Int. J. Bioautomat. 20(2), 289–300 (2016)

    Google Scholar 

  107. Kirilova, E.G., Petrova, P., Becker, W., Ivanova, J.: Influence of the geometry and the frequency range on the interface delamination in smart patch/layer structures under combined dynamic loading. ZAMM–J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, First published: 24 April 2017. https://doi.org/10.1002/zamm.201600273

  108. Kirilova, E.G., Vaklieva-Bancheva, N.G.: ANN modeling of a two-stage industrial ATAD system for the needs of energy integration. Bulgar. Chem. Commun. Special Issue K 50, 97–106 (2018)

    Google Scholar 

  109. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science, New Series 220(4598), 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  110. Kosev, K., Trenkova, T., Roeva, O.: Tabu search for parameter identification of an fermentation process model. J. Int. Sci. Publ. Mater. Methods Technol. 6(2), 457–464 (2012)

    Google Scholar 

  111. Kosev, K., Roeva, O.: Application of functional states for modeling of acetate production in E. coli fed-batch cultivation process. In: Fifth National Young Scientific-Practical Session, Bulgaria, pp. 62–66 (2007) (in Bulgarian)

    Google Scholar 

  112. Kostov, G., Pircheva, D., Naydenova, V., Iliev, V., Lyubenova, V., Ignatova, M.: Kinetics investigation of bio-ethanol production with free and immobilized cells. Comptes rendus de l’Académie bulgare des Sciences 66(10), 1463–1472 (2013)

    Google Scholar 

  113. Kostov, G., Lyubenova, V., Shopska, V., Petelkov, I., Ivanov, K., Iliev, V., Denkova, R., Ignatova, M.: Software sensors for monitoring the biomass concentration and the kinetics of continuous beer fermentation with immobilized cells. Comptes rendus de l’Académie bulgare des Sciences 68(11), 1439–1448 (2015)

    Google Scholar 

  114. Lapa, K., Cpałka, K., Koprinkova-Hristova, P.: New method for fuzzy nonlinear modelling based on genetic programming. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9692, pp. 432–449 (2016)

    Google Scholar 

  115. Lyubenova, V.: Monitoring the kinetics of biotechnological processes. Doctor of Science Thesis, Technical Science 5.2 Electronics, Electrical Engineering and Automatics, Bulgarian Academy of Sciences, 189 pp. (2016) (in Bulgarian)

    Google Scholar 

  116. Lyubenova, V.: Monitoring the kinetics of measured bioprocess variables–theory and applications. Inf. Technol. Control, The John Atanasoff Society of Automatics and Informatics 14(1), 2–12 (2017)

    Google Scholar 

  117. Lyubenova, V., Kostov, G.: On-line Monitoring and Control of Biotechnological Processes, 187 pp. Academic Publishing House of the University of Food Technology (2016) (in Bulgarian)

    Google Scholar 

  118. Lyubenova, V., Kostov, G., Denkova, R., Pircheva, D., Ignatova, M., Angelov, M.: Adaptive control of continuous fermentation with immobilized yeasts Saccharomyces cerevisiae BO 213. In: Proceedings of the 1st WSEAS International Conference on Industrial and Manufacturing Technologies, May 14–16, pp. 35–40. Greece, Athens (2013)

    Google Scholar 

  119. Lyubenova, V., Ignatova, M.: On-line estimation of physiological states for monitoring and control of bioprocesses. AIMS Bioeng. 4(1), 93–112 (2017)

    Article  Google Scholar 

  120. Lyubenova, V., Ignatova, M., Kostov, G.: Interactive teaching system for structural and parametric identification of bioprocess models. Comptes rendus de l’Académie bulgare des Sciences 71(6), 820–828 (2018)

    Google Scholar 

  121. Lyubenova, V., Ignatova, M., Kostov, G., Shopska, V., Petre, E., Roman, M.: An interactive teaching system for kinetics modelling of biotechnological processes. In: Proceedings of the IEEE International Conference on System Theory, Control and Computing—ICSTCC 2018, October 10–12, 2018, Sinaia, Romania, pp. 366–371 (2018)

    Google Scholar 

  122. Lyubenova, V., Ignatova, M., Salonen, K., Kiviharju, K., Eerikäinen, T.: Control of \(\alpha \)-amylase production by Bacillus subtilis. Bioprocess Biosyst. Eng. 34(3), 367–374 (2011)

    Article  Google Scholar 

  123. Lyubenova, V., Junne, S., Ignatova, M., Neubauer, P.: Software sensor design considering oscillating conditions as present in industrial scale fed-batch cultivations. Biotechnol. Bioeng. 110(7), 1945–1955 (2013)

    Article  Google Scholar 

  124. Lyubenova, V., Ignatova, M.: Cascade software sensors for monitoring of activated sludge wastewater treatment processes. Comptes rendus de l’Académie bulgare des Sciences 64(3), 395–404 (2011)

    Google Scholar 

  125. Lyubenova, V., Ignatova, M.: Monitoring of dynamics of fed-batch bioprocesses in stirred tank reactors. Comptes rendus de l’Académie bulgare des Sciences 66(9), 1323–1330 (2013)

    Google Scholar 

  126. Lyubenova, V., Ignatova, M., Novak, M., Patarinska, T.: Reaction rate estimators of fed-batch process for poly-\(\beta \)-hydroxybutyrate (PHB) production by mixed culture. Biotechnol. Biotechnol. Equip. 21(1), 113–116 (2007)

    Article  Google Scholar 

  127. Myasnichenko, V., Kirilov, L., Mikhov, R., Fidanova, S., Sdobnyakov, N.: Simulated annealing method for metal nanoparticle structures optimization. In: Studies of Computational Intelligence, vol. 793, pp. 277–289 (2019)

    Google Scholar 

  128. Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Structural instability of gold and bimetallic nanowires using Monte Carlo simulation. In: Studies in Computational Intelligence, vol. 838, pp. 133–145 (2020)

    Google Scholar 

  129. Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Monte-Carlo approach for optimizing of metal nanowires and nanoalloys structure. In: Lecture Notes in Computer Science, vol. 11189, pp. 133–141 (2019)

    Google Scholar 

  130. Ochoa, S., Lyubenova, V., Repke, J., Ignatova, M., Wozny, G.: Adaptive control of the simultaneous saccharification-fermentation process from starch to ethanol. Comput. Aided Chem. Eng., Elsevier 25, 489–494 (2008)

    Google Scholar 

  131. Olteanu, M., Paraschiv, N., Koprinkova-Hristova, P.: Genetic Algorithms vs. knowledge-based control of PHB production. Cybernet. Inf. Technol. 19(2), 104–116 (2019)

    Google Scholar 

  132. Olteanu, M., Paraschiv, N., Koprinkova-Hristova, P., Todorov, Y.: Genetic algorithm for system modelling. In: Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017, pp. 1–4 (2017)

    Google Scholar 

  133. Pencheva, T.: Generalized nets model of crossover technique choice in genetic algorithms. Issues Intuitionistic Fuzzy Sets Generalized Nets 9, 92–100 (2011)

    Google Scholar 

  134. Pencheva, T., Atanassov, K., Shannon, A.: Generalized nets model of offspring reinsertion in genetic algorithms. Ann. “Informatics” Sect. Union Scientists Bulgaria 4, 29–35 (2011)

    Google Scholar 

  135. Pencheva, T., Angelova, M.: InterCriteria analysis of simple genetic algorithms performance. Stud. Comput. Intell. 681, 147–159 (2017)

    MathSciNet  MATH  Google Scholar 

  136. Pencheva, T., Angelova, M.: Intuitionistic fuzzy logic implementation to assess purposeful model parameters genesis. Stud. Comput. Intell. 657, 179–203 (2017)

    Google Scholar 

  137. Pencheva, T., Angelova, M.: Purposeful model parameters genesis in multi-population genetic algorithm. Global J. Technol. Optimizat. 5, 164 (2014)

    Article  Google Scholar 

  138. Pencheva, T., Angelova, M.: Modified multi-population genetic algorithms for parameter identification of yeast fed-batch cultivation. Bulgar. Chem. Commun. 48(4), 713–719 (2016)

    Google Scholar 

  139. Pencheva, T., Angelova, M., Atanassov, K.: Genetic algorithms quality assessment implementing intuitionistic fuzzy logic, Chapter 11. In: Vasant, P. (ed.) Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications, pp. 327–354. Hershey, Pennsylvania (USA), IGI Global (2013)

    Google Scholar 

  140. Pencheva, T., Angelova, M., Atanassov, K.: Quality assessment of multi-population genetic algorithms performance. Int. J. Sci. Eng. Res. 4(12), 1870–1875 (2013)

    Google Scholar 

  141. Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. In: Atanassov, K.T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tré, G., Zadrożny, S. (eds.) Novel Developments in Uncertainty Representation and Processing, Part V, vol. 401 of the Series Advances in Intelligent Systems and Computing, pp. 385–397 (2016)

    Google Scholar 

  142. Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes on Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)

    MATH  Google Scholar 

  143. Pencheva, T., Tzonkov, S., Hitzmann, B.: Structural and parameter identification of dissolved oxygen limitation state during yeast fed-batch cultivation. In: 2009 Annual Bulletin of the Australian Institute of High Energetic Materials, vol. 1, pp. 68–74 (2010)

    Google Scholar 

  144. Pencheva, T., Tzonkov, S., Hitzmann, B.: Identification of dissolved oxygen limitation state during yeast fed-batch cultivation. In: Proceedings of the 2009 Interdisciplinary Conference on Chemical, Mechanical and Materials Engineering (2009 ICCMME)—World Conference Series with Virtual Participation, Australian Institute of High Energetic Materials, Melbourne, Australia, pp. 151–156 (2009)

    Google Scholar 

  145. Pencheva, T., Roeva, O., Hristozov, I.: Functional State Approach to Fermentation Processes Modelling, Tzonkov, S., Hitzmann, B. (eds.), Prof. Marin Drinov Academic Publishing House, Sofia (2006)

    Google Scholar 

  146. Pencheva, T., Roeva, O., Angelova, M.: Investigations of genetic algorithm performance based on different algorithms for InterCriteria relations calculation. In: Lecture Notes in Computer Science, vol. 10665, pp. 390–398 (2018)

    Google Scholar 

  147. Pencheva, T., Roeva, O., Shannon, A.: Generalized net models of basic genetic algorithm operators. In: Studies in Fuzziness and Soft Computing, vol. 332, pp. 305–325 (2016)

    Google Scholar 

  148. Pencheva, T., Petrov, M., Ilkova, T., Roeva, O., Vanags, J.: Bioprocess Engineering, Viesturs, U., Tzonkov S. (eds.), Avangard Prima, Sofia, Bulgaria (2006)

    Google Scholar 

  149. Perez, J., Valdez, F., Roeva, O., Castillo, O.: Parameter adaptation of the Bat Algorithm, using type-1, interval type-2 fuzzy logic and intuitionistic fuzzy logic. Notes on Intuitionistic Fuzzy Sets 22(2), 87–98 (2016)

    MATH  Google Scholar 

  150. Perez, J., Valdez, F., Castillo, O., Roeva, O.: Bat Algorithm with parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In: 2016 IEEE 8th International Conference on Intelligent Systems, Sofia, pp. 120–127 (2016)

    Google Scholar 

  151. Petelkov, I., Lyubenova, V., Zlatkova, A., Shopska, V., Denkova, R., Kaneva, M., Kostov, G.: Encapsulation of brewing yeast in Alginate/Chitosan matrix: kinetic characteristics of the fermentation process at a constant fermentation temperature. Comptes rendus de l’Académie bulgare des Sciences 69(10), 1355–1364 (2016)

    Google Scholar 

  152. Petrova, T., Kirilova, E.G., Becker, W., Vaklieva-Bancheva, N.G., Ivanova, J.: Optimal analysis of adhesive lightweight joints. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 96(11), 1280–1290 (2016)

    Google Scholar 

  153. Petrova, T., Kirilova, E.G., Becker, W., Ivanova, J.: Monitoring of adhesive joint used in lightweight devices. Pliska Studia Matematica 25, 119–128 (2015)

    MathSciNet  MATH  Google Scholar 

  154. Raikova, R.T., Gabriel, D.A., Aladjov, H.T.: Experimental and modelling investigation of learning a fast elbow flexion in the horizontal plane. J. Biomech. 38(10), 2070–2077 (2005)

    Article  Google Scholar 

  155. Raikova, R.T., Gabriel, D.A., Aladjov, H.T.: Modeling investigation of learning a fast elbow flexion in the horizontal plane–prediction of muscle forces and motor units action. Comput. Methods Biomech. Biomed. Eng. 9(4), 211–219 (2006)

    Article  Google Scholar 

  156. Raikova, R.T., Aladjov, H.T.: Hierarchical genetic algorithm versus static optimization–investigation of elbow flexion and extension movements. J. Biomech. 35(8), 1123–1135 (2002)

    Article  Google Scholar 

  157. Raikova, R.T., Aladjov, H.T.: The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion. Comput. Methods Biomech. Biomed. Eng. 6(3), 181–196 (2003)

    Article  Google Scholar 

  158. Raikova, R.T., Aladjov, H.T.: Simulation of the motor units control during a fast elbow flexion in the sagittal plane. J. Electromyogr. Kinesiol. 14(2), 227–238 (2004)

    Article  Google Scholar 

  159. Raikova, R., Aladjov, H.T.: Comparison between two muscle models under dynamic conditions. Comput. Biol. Med. 35(5), 373–387 (2005)

    Article  Google Scholar 

  160. Roeva, O.: Application of genetic algorithms in fermentation process identification. J. Bulgar. Acad. Sci., CXVI 3, 39–43 (2003)

    Google Scholar 

  161. Roeva, O.: Genetic algorithms for a parameter estimation of a fermentation process model: a comparison. Int. J. Bioautomat. 3, 19–28 (2005)

    Google Scholar 

  162. Roeva, O.: A modification of simple genetic algorithms. In: International Symposium “Bioprocess Systems ’2005—BioPS ’05”, Sofia, Bulgaria, October 25, 26, 2005, I.1–I.14 (2005)

    Google Scholar 

  163. Roeva, O.: A modified genetic algorithm for a parameter identification of fermentation processes. Biotechnol. Biotechnol. Equip. 20(1), 202–209 (2006)

    Article  Google Scholar 

  164. Roeva, O.: Tuning of genetic algorithm for parameter identification of fed-batch cultivation process. In: Fifth National Young Scientific-Practical Session, Bulgaria, pp. 94–98 (2007) (in Bulgarian)

    Google Scholar 

  165. Roeva, O.: Multipopulation genetic algorithm: a tool for parameter optimization of cultivation processes models. In: Lecture Notes on Computer Science, Springer, Berlin, Heidelberg, vol. 4310, pp. 255–262 (2007)

    Google Scholar 

  166. Roeva, O.: Functional state modelling of Escherichia coli cultivation with application of genetic algorithms, Ph.D. thesis, Technical University, Sofia, Bulgaria (2007) (in Bulgarian)

    Google Scholar 

  167. Roeva, O.: Parameter estimation of a monod-type model based on genetic algorithms and sensitivity analysis. In: Lecture Notes on Computer Science, Springer, Berlin Heidelberg, vol. 4818, pp. 601–608 (2008)

    Google Scholar 

  168. Roeva, O.: Improvement of genetic algorithm performance for identification of cultivation process models. In: Artificial Intelligence Series—WSEAS, Advanced Topics on Evolutionary Computing, Book Series, pp. 34–39 (2008)

    Google Scholar 

  169. Roeva, O.: An application of genetic algorithms for fermentation processes optimization. In: Sixth National Young Scientific-Practical Session, Bulgaria, pp. 93–98 (2008) (in Bulgarian)

    Google Scholar 

  170. Roeva, O.: Feed rate profiles synthesis using genetic algorithms, AIMSA 2010. In: Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg, vol. 6304, pp. 281–282 (2010)

    Google Scholar 

  171. Roeva, O.: Genetic algorithms for static optimisation of fed-batch fermentation processes, Ch. 4. In: Tzonkov, S., Drinov, M. (eds.) Contemporary Approaches to Modelling, Optimisation and Control of Biotechnological Processes, pp. 105–134. Academic Publ. House, Sofia (2010)

    Google Scholar 

  172. Roeva, O.: A hybrid genetic algorithm for parameter identification of bioprocess models. In: Lecture Notes on Computer Science, Springer, Germany, vol. 7116, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 7116, pp. 247–255 (2012)

    Google Scholar 

  173. Roeva, O.: Optimization of E. coli cultivation model parameters using firefly algorithm. Int. J. Bioautomat. 16(1), 23–32 (2012)

    Google Scholar 

  174. Roeva, O.: A comparison of simulated annealing and genetic algorithm approaches for cultivation model identification. In: Monte Carlo Methods and Applications, Walter de Gruyter GmbH & Co. KG, Genthiner Strasse 13, D-10785 Berlin/Germany, pp. 193–201 (2013)

    Google Scholar 

  175. Roeva, O.: Genetic algorithm and firefly algorithm hybrid schemes for cultivation processes modelling. In: Kowalczyk, R., Fred, A., Joaquim, F. (eds.) Transactions on Computational Collective Intelligence XVII, Series Lecture Notes in Computer Science, Springer, vol. 8790, pp. 196–211 (2014)

    Google Scholar 

  176. Roeva, O.: Bat algorithm in terms of generalized net. In: Proceedings of 15th International Workshop on Generalized Nets, Burgas, pp. 1–6 (2014)

    Google Scholar 

  177. Roeva, O.: Application of artificial bee colony algorithm for model parameter identification. In: Zelinka, I., Vasant, P., Duy, V., Dao, T. (eds.) Innovative Computing, Optimization and Its Applications, Studies in Computational Intelligence, vol. 741, pp. 285–303 (2018)

    Google Scholar 

  178. Roeva, O., Shannon, A., Pencheva, T.: Description of simple genetic algorithm modifications using generalized nets. In: IEEE 6th International Conference on IS 2012, Sofia, Bulgaria, vol. 2, pp. 178–183 (2012)

    Google Scholar 

  179. Roeva, O., Zoteva, D., Atanassova, V., Atanassov, K., Castillo, O.: Cuckoo search and firefly algorithms in terms of generalized net theory. Soft. Comput. 24, 4877–4898 (2020)

    Article  Google Scholar 

  180. Roeva, O., Perez, J., Valdez, F., Castillo, O.: InterCriteria analysis of bat algorithm with parameter adaptation using type-1 and interval type-2 fuzzy systems. Notes on Intuitionistic Fuzzy Sets 22(3), 91–105 (2016)

    MATH  Google Scholar 

  181. Roeva, O., Kosev, K., Tzonkov, S.: Mathematical description of functional states in E. coli fed-batch cultivation processes. Int. J. Bioautomat. 7, 34–45

    Google Scholar 

  182. Roeva, O., Kosev, K.: Genetic algorithms for feed rate profiles design. In: Proceedings of the International Conference on Automatics and informatics, Sofia, pp. I-45–I-48 (2010)

    Google Scholar 

  183. Roeva, O., Kosev, K., Trenkova, T.: A modified multi-population genetic algorithm for parameter identification of cultivation process models. In: Proceedings of the ICEC 2010, Valencia, pp. 348–351 (2010)

    Google Scholar 

  184. Roeva, O., Melo-Pinto, P.: Generalized net model of Firefly algorithm. In: Proceedings of 14th International Workshop on Generalized Nets, Burgas, pp. 22–27 (2013)

    Google Scholar 

  185. Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. In: Atanassov, K.T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tré, G., Zadrożny, S. (eds.) Novel Developments in Uncertainty Representation and Processing, Part V, vol. 401 of the series Advances in Intelligent Systems and Computing, pp. 301–313 (2016)

    Google Scholar 

  186. Roeva, O., Vassilev, P., Angelova, M., Pencheva, T.: InterCriteria analysis of parameters relations in fermentation processes models. In: Lecture Notes in Computer Science, vol. 9330, pp. 171–181 (2015)

    Google Scholar 

  187. Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for InterCriteria relations calculation. In: 2016 IEEE 8th International Conference on Intelligent Systems, Sofia, September 04, 2016–September 06, pp. 567–572 (2016)

    Google Scholar 

  188. Roeva, O., Fidanova, S.: Metaheuristic techniques for optimization of an E. coli cultivation model. Biotechnol. Biotechnol. Equip. 27(3), 3870–3876 (2013)

    Google Scholar 

  189. Roeva, O., Fidanova, S.: Comparison of different metaheuristic algorithms based on inter-criteria analysis. J. Comput. Appl. Math. 340, 615–628 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  190. Roeva, O., Fidanova, S.: Chapter 13. Application of genetic algorithms and ant colony optimization for modeling of E. coli cultivation process. In: Real-World Application of Genetic Algorithms, In Tech, pp. 261–282 (2012)

    Google Scholar 

  191. Roeva, O., Fidanova, S.: Parameter identification of an E. coli cultivation process model using hybrid metaheuristics. Int. J. Metaheuristics 3(2), 133–148 (2014)

    Google Scholar 

  192. Roeva, O., Fidanova, S.: Hybrid bat algorithm for parameter identification of an E. coli cultivation process model. Biotechnol. Biotechnol. Equip. 27(6), 4323–4326 (2013)

    Google Scholar 

  193. Roeva, O., Fidanova, S., Paprzycki, M.: Comparison of different ACO start strategies based on InterCriteria analysis. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization, Results of the Workshop on Computational Optimization WCO 2016. Studies in Computational Intelligence, vol. 717, pp. 53–72 (2018)

    Google Scholar 

  194. Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems, vol. 5, pp. 501–506 (2015)

    Google Scholar 

  195. Roeva, O., Fidanova, S., Atanassova, V.: Hybrid ACO-GA for parameter identification of an E. coli cultivation process model. In: Lecture Notes in Computer Science, vol. 8353, pp. 313–320 (2014)

    Google Scholar 

  196. Roeva, O., Fidanova, S., Luque, G., Paprzycki, M., Gepner, P.: Hybrid Ant Colony Optimization Algorithm for Workforce Planning, FedCSIS’2018, IEEE Xplorer, pp. 233–236

    Google Scholar 

  197. Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: IEEE Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), WCO 2013, Poland, pp. 371–376 (2013)

    Google Scholar 

  198. Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. In: Studies in Computational Intelligence, vol. 610, pp. 107–126 (2016)

    Google Scholar 

  199. Roeva, O., Tzonkov, S.: Parametric identification of fermentation processes using multy-population genetic algorithms. Technical Ideas XL(3–4), 18–26 (2003)

    Google Scholar 

  200. Roeva, O., Tzonkov, S.: Modelling of escherichia coli cultivations: acetate inhibition in a fed-batch culture. Int. J. Bioautomat. 4, 1–11 (2006)

    Google Scholar 

  201. Roeva, O., Tzonkov, S.: An improvement of functional state local models of escherichia coli MC4110 fed-batch cultivation. Inf. Technol. Control, Year V 4, 47–52 (2007)

    Google Scholar 

  202. Roeva, O., Pencheva, T., Shannon, A., Atanassov, K.: Generalized nets in artificial intelligence. In: Generalized Nets and Genetic Algorithms, vol. 7. Prof. Marin Drinov Academic Publishing House, Sofia (2013)

    Google Scholar 

  203. Roeva, O., Pencheva, T., Georgieva, Y., Hitzmann, B., Tzonkov, S.: Implementation of functional state approach for modelling of escherichia coli fed-batch cultivation. Biotechnol. Biotechnol. Equip. 18(3), 207–214 (2004)

    Article  Google Scholar 

  204. Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, S.: A genetic algorithms based approach for identification of escherichia coli fed-batch fermentation. Int. J. Bioautomat. 1, 30–41 (2004)

    Google Scholar 

  205. Roeva, O., Pencheva, T., Tzonkov, S., Hitzmann, B.: Functional state modelling of cultivation processes: dissolved oxygen limitation state. Int. J. Bioautomat. 19(1, Suppl. 1), S93–S112 (2015)

    Google Scholar 

  206. Roeva, O., Pencheva, T., Tzonkov, S., Arndt, M., Hitzmann, B., Kleist, S., Miksch, G., Friehs, K., Flaschel, E.: Multiple model approach to modelling of escherichia coli fed-batch cultivation extracellular production of bacterial phytase. Electron. J. Biotechnol. 10(4), 592–603 (2007)

    Article  Google Scholar 

  207. Roeva, O., Pencheva, T., Angelova, M., Vassilev, P.: InterCriteria analysis by pairs and triples of genetic algorithms application for models identification. In: Studies in Computational Intelligence, Springer, vol. 655, pp. 193–218 (2016)

    Google Scholar 

  208. Roeva, O., Pencheva, T., Atanassov, K., Shannon, A.: Generalized net model of selection operator of genetic algorithms. In: IEEE International Conference on Intelligent Systems, July 7–9, London, UK, pp. 286–289 (2010)

    Google Scholar 

  209. Roeva, O., Pencheva, T.: Functional state modelling approach validation for yeast and bacteria cultivations. Biotechnol. Biotechnol. Equip. 28(5), 968–974 (2014)

    Article  Google Scholar 

  210. Roeva, O., Trenkova, T.: Modelling of a fed-batch culture applying simulated annealing. BIOMATH 1(2), 1211114, 1–6. https://doi.org/10.11145/j.biomath.2012.11.114 (2012)

  211. Roeva, O., Trenkova, T.: Cultivation process optimization based on genetic algorithms. J. Int. Sci. Publ. Mater. Methods Technol. 4(2), 121–136 (2010)

    Google Scholar 

  212. Roeva, O., Trenkova, T.: Genetic algorithms and firefly algorithms for non-linear bioprocess model parameters identification. In: Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA), 5–7 October 2012, Barcelona, Spain, pp. 164–169 (2012)

    Google Scholar 

  213. Roeva, O., Slavov, T.: PID controller tuning based on metaheuristic algorithms for bioprocess control. Biotechnol. Biotechnol. Equip. 26(5), 3267–3277 (2012)

    Article  Google Scholar 

  214. Roeva, O., Slavov, T.: Firefly algorithm tuning of PID controller for glucose concentration control during E. coli fed-batch cultivation process. In: Proceedings of the Federated Conference on Computer Science and Information Systems, WCO 2012, Poland, pp. 455–462 (2012)

    Google Scholar 

  215. Roeva, O., Slavov, T.: Application of simulated annealing and threshold accepting for a parameter tuning problem. In: Proceedings of OMCONET, Southampton, England, pp. 64–71 (2012)

    Google Scholar 

  216. Roeva, O., Slavov, T.: Fed-batch cultivation control based on genetic algorithm PID controller tuning. In: Lecture Notes on Computer Science, Springer, Berlin, Heidelberg, vol. 6046, pp. 289–296 (2011)

    Google Scholar 

  217. Roeva, O., Slavov, T., Fidanova, S.: Population-based vs. single point search meta-heuristics for a PID controller tuning. In: Vasant, P. (ed.) Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications, pp. 200–230. IGI Global (2014)

    Google Scholar 

  218. Roeva, O., Slavov, T.: A new hybrid GA-FA tuning of PID controller for glucose concentration control. In: Fidanova, S. (ed.). Recent Advances in Computational Optimization. Studies of Computational Intelligence, Springer International Publishing Switzerland, vol. 470, pp. 155–168 (2013)

    Google Scholar 

  219. Roeva, O., Atanassova, V.: Cuckoo search algorithm for model parameter identification. Int. J. Bioautomat. 20(4), 483–492 (2016)

    Google Scholar 

  220. Roeva, O., Atanassova, V.: Generalized net model of cuckoo search algorithm. In: Proceedings of the 2016 IEEE 8th International Conference on Intelligent Systems, Sofia, September 04, 2016–September 06, 2016, pp. 589–592 (2016)

    Google Scholar 

  221. Shehab, M., Khader, A.T., Al-Betar, M.A.: A survey on applications and variants of the cuckoo search algorithm. Appl. Soft. Comput. 61, 1041–1059 (2017)

    Article  Google Scholar 

  222. Shopova, E.G., Vaklieva-Bancheva, N.G.: BASIC–a genetic algorithm for engineering problem solution. Comput. Chem. Eng. 30(8), 1293–1309 (2006)

    Article  Google Scholar 

  223. Shopska, V., Denkova, R., Lyubenova, V., Kostov, G.: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process. In: Fermented Beverages. Woodhead Publishing, pp. 529–575 (2019)

    Google Scholar 

  224. Shindarov, M., Fidanova, S., Marinov, P.: Wireless sensor positioning algorithm. In: Proceedings of IEEE Conference on Intelligent Systems, Sofia, Bulgaria, pp. 419–424 (2012)

    Google Scholar 

  225. Slavov, T., Roeva, O.: Application of genetic algorithm to tuning a PID controller for glucose concentration control. WSEAS Trans. Syst. 11(7), 223–233 (2012)

    Google Scholar 

  226. Slavov, T., Roeva, O.: Genetic algorithm tuning of PID controller in Smith predictor for glucose concentration control. Int. J. Bioautomat. 15(2), 101–114 (2011)

    Google Scholar 

  227. Tangherloni, A., Spolaor, S., Cazzaniga, P., et al.: Biochemical parameter estimation vs. benchmark functions: a comparative study of optimization performance and representation design. Appl. Soft. Comput. 81, 105494. 2019.105494 (2019)

    Google Scholar 

  228. Tzonkov, S., Kostov, Y., Petrov, M., Pencheva, T., Zlateva, P., Ljakova, K., Ilkova, T., Hristozov, I., Iliev, B., Roeva, O., Hristova, Y.: Bioprocess Systems: Modeling, Control and Optimization, East-West, Sofia, Bulgaria (2004) (in Bulgarian)

    Google Scholar 

  229. Vaklieva-Bancheva, N.G., Vladova, R., Kirilova, E.G.: Simulation of heat-integrated autothermal thermophilic aerobic digestion system operating under uncertainties through artificial neural network. Chem. Eng. Trans. 76, 325–330 (2019)

    Google Scholar 

  230. Vaklieva-Bancheva, N.G., Vladova, R., Kirilova, E.G.: Genetic algorithm approach for optimization of energy integrated ATAD systems under uncertainties. In: Proceedings of the 17th International Symposium on Thermal Science and Engineering of Serbia “Energy-Ecology-Efficiency”, Sokobanja, Serbia, pp. 851–870 (2015)

    Google Scholar 

  231. Vaklieva-Bancheva N.G., Kirilova, E.G., Vladova, R.K.: Capturing uncertainties for sustainable operation of autothermal thermophilic aerobic digestion systems. In: book series on Computer Aided Chemical Engineering, vol. 33B, pp. 1729–1734 (2014)

    Google Scholar 

  232. Vaklieva-Bancheva, N.G., Shopova, E.G., Espuña, A., Puigjaner, L.: Product portfolio optimization for dairy industry. In: Proceedings of International Mediterranean Modelling Multiconference (October 4th–6th, 2006), Spain, Barcelona, pp. 101–110 (2006)

    Google Scholar 

  233. Vaklieva-Bancheva, N.G., Espuña, A., Shopova, E.G., Puigjaner, L., Ivanov, B.B.: Multi-objective optimization of dairy supply chain. In: book series on Computer Aided Chemical Engineering, vol. 24, pp. 781–786. Elsevier (2007)

    Google Scholar 

  234. Vaklieva-Bancheva, N.G., Kirilova, E.G.: Working frame for environmental benign management of multipurpose batch chemical and biochemical plants. Asian Chem. Lett., ANITA Publications 14(2), 157–170 (2010)

    Google Scholar 

  235. Vaklieva-Bancheva, N.G., Kirilova, E.G.: Cleaner manufacture of multipurpose batch chemical and biochemical plants. Scheduling and optimal choice of production recipes. J. Clean. Prod. 18(13), 1300–1310 (2010)

    Google Scholar 

  236. Vaklieva-Bancheva, N.G., Kirilova, E.G.: Reduction the impact of peaks emissions of pollutants from multipurpose batch chemical and biochemical plants. Bulgar. Chem. Commun. 45(1), 47–54 (2013)

    Google Scholar 

  237. Viesturs, U., Simeonov, I., Pencheva, T., Vanags, J., Petrov, M., Pavlov, Y., Roeva, O., Ilkova, T., Vishkins, M., Hristozov, I.: Contemporary Approaches to Modelling, Optimisation and Control of Biotechnological Processes, Tzonkov, S., (ed.). Prof. Marin Drinov Academic Publishing House, Sofia, Bulgaria (2010)

    Google Scholar 

  238. Yang, X.-S.: Nature-Inspired Meta-Heuristic Algorithms. Luniver Press, Beckington, UK (2008)

    Google Scholar 

  239. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009 India), IEEE Publications, USA, pp. 210–214 (2009)

    Google Scholar 

  240. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. Department of Engineering, University of Cambridge, Trum**ton Street, Cambridge CB2 1PZ, UK (2010)

    Google Scholar 

  241. Zlatkova, A., Lyubenova, V., Dudin, S., Ignatova, M.: Marker for switching of multiple models describing E. coli cultivation. Comptes rendus de l’Académie bulgare des Sciences, 70(2), 263–272 (2017)

    Google Scholar 

  242. Zlatkova, A., Lyubenova, V.: Dynamics monitoring of fed-batch E. coli fermentation. Int. J. Bioautomat. 21(1), 121–132 (2017)

    Google Scholar 

  243. Zlatkova, A., Lyubenova, V.: Monitoring the dynamics of bioprocesses using intermediate metabolite. In: International Conference Automatics & Informatics, October 4–6, pp. 231–234 (2017)

    Google Scholar 

  244. Zlatkova, A., Lyubenova, V., Ignatova, M.: Monitoring of oxidative-fermentative physiological states in fed-batch E. coli fermentation. In: Proceedings of the International Conference Agriculture and Food for the XXI Century, May 11–13, Sibiu, Romania, pp. 25–36 (2017)

    Google Scholar 

Download references

Acknowledgements

Work presented here is partially supported by the National Science Fund of Bulgaria under grants DN02/10 “New Instruments for Knowledge Discovery from Data, and their Modelling” and KP-06-H3/23 “Interactive System for Education in Modelling and Control of Bioprocesses (InSEMCoBio)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Ribagin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribagin, S., Lyubenova, V. (2021). Metaheuristic Algorithms: Theory and Applications. In: Atanassov, K.T. (eds) Research in Computer Science in the Bulgarian Academy of Sciences. Studies in Computational Intelligence, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-72284-5_18

Download citation

Publish with us

Policies and ethics

Navigation