Drug and Disease Interpretation Learning with Biomedical Entity Representation Transformer

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Abstract

Concept normalization in free-form texts is a crucial step in every text-mining pipeline. Neural architectures based on Bidirectional Encoder Representations from Transformers (BERT) have achieved state-of-the-art results in the biomedical domain. In the context of drug discovery and development, clinical trials are necessary to establish the efficacy and safety of drugs. We investigate the effectiveness of transferring concept normalization from the general biomedical domain to the clinical trials domain in a zero-shot setting with an absence of labeled data. We propose a simple and effective two-stage neural approach based on fine-tuned BERT architectures. In the first stage, we train a metric learning model that optimizes relative similarity of mentions and concepts via triplet loss. The model is trained on available labeled corpora of scientific abstracts to obtain vector embeddings of concept names and entity mentions from texts. In the second stage, we find the closest concept name representation in an embedding space to a given clinical mention. We evaluated several models, including state-of-the-art architectures, on a dataset of abstracts and a real-world dataset of trial records with interventions and conditions mapped to drug and disease terminologies. Extensive experiments validate the effectiveness of our approach in knowledge transfer from the scientific literature to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://clinicaltrials.gov/.

  2. 2.

    https://www.ctti-clinicaltrials.org/aact-database.

References

  1. Aronson, A.R.: Effective map** of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, p. 17. American Medical Informatics Association (2001)

    Google Scholar 

  2. Atal, I., Zeitoun, J.D., Névéol, A., Ravaud, P., Porcher, R., Trinquart, L.: Automatic classification of registered clinical trials towards the global burden of diseases taxonomy of diseases and injuries. BMC Bioinform. 17(1), 392 (2016)

    Article  Google Scholar 

  3. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl\_1), D267–D270 (2004)

    Google Scholar 

  4. Boland, M.R., Miotto, R., Gao, J., Weng, C.: Feasibility of feature-based indexing, clustering, and search of clinical trials. Meth. Inf. Med. 52(05), 382–394 (2013)

    Article  Google Scholar 

  5. Brown, A.S., Patel, C.J.: A standard database for drug repositioning. Sci. Data 4(1), 1–7 (2017)

    Article  Google Scholar 

  6. Coletti, M.H., Bleich, H.L.: Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8(4), 317–323 (2001)

    Article  Google Scholar 

  7. Davis, A.P., et al.: The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 47(D1), D948–D954 (2019)

    Article  Google Scholar 

  8. Davis, A.P., Wiegers, T.C., Rosenstein, M.C., Mattingly, C.J.: Medic: a practical disease vocabulary used at the comparative toxicogenomics database. Database 2012 (2012)

    Google Scholar 

  9. Dermouche, M., Looten, V., Flicoteaux, R., Chevret, S., Velcin, J., Taright, N.: ECSTRA-INSERM@ CLEF eHealth2016-task 2: ICD10 code extraction from death certificates. CLEF (2016)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  11. Gayvert, K.M., Madhukar, N.S., Elemento, O.: A data-driven approach to predicting successes and failures of clinical trials. Cell Chem. Biol. 23(10), 1294–1301 (2016)

    Article  Google Scholar 

  12. Ghiasvand, O., Kate, R.J.: UWM: Disorder mention extraction from clinical text using CRFs and normalization using learned edit distance patterns. In: SemEval@ COLING, pp. 828–832 (2014)

    Google Scholar 

  13. Gill, S.K., Christopher, A.F., Gupta, V., Bansal, P.: Emerging role of bioinformatics tools and software in evolution of clinical research. Perspect. Clin. Res. 7(3), 115 (2016)

    Article  Google Scholar 

  14. Gillick, D., et al.: Learning dense representations for entity retrieval. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp. 528–537 (2019)

    Google Scholar 

  15. Hao, T., Rusanov, A., Boland, M.R., Weng, C.: Clustering clinical trials with similar eligibility criteria features. J. Biomed. Inform. 52, 112–120 (2014)

    Article  Google Scholar 

  16. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  17. Huang, C.C., Lu, Z.: Community challenges in biomedical text mining over 10 years: success, failure and the future. Briefings Bioinform. 17(1), 132–144 (2015)

    Article  Google Scholar 

  18. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)

    Google Scholar 

  19. Humeau, S., Shuster, K., Lachaux, M.A., Weston, J.: Poly-encoders: transformer architectures and pre-training strategies for fast and accurate multi-sentence scoring. CoRR abs/1905.01969. External Links: Link Cited by 2, 2–2 (2019)

    Google Scholar 

  20. Ivanenkov, Y., et al.: Identification of novel antibacterials using machine-learning techniques. Front. Pharmacol. 10, 913 (2019)

    Article  Google Scholar 

  21. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUS. ar**v preprint ar**v:1702.08734 (2017)

  22. Leaman, R., Lu, Z.: Taggerone: joint named entity recognition and normalization with semi-markov models. Bioinformatics 32(18), 2839–2846 (2016)

    Article  Google Scholar 

  23. Lee, J., et al.: Biobert: pre-trained biomedical language representation model for biomedical text mining. Bioinformatics (2019)

    Google Scholar 

  24. Leveling, J.: Patient selection for clinical trials based on concept-based retrieval and result filtering and ranking. In: TREC (2017)

    Google Scholar 

  25. Li, H., et al.: CNN-based ranking for biomedical entity normalization. BMC Bioinform. 18(11), 79–86 (2017)

    Google Scholar 

  26. Li, J., Lu, Z.: Systematic identification of pharmacogenomics information from clinical trials. J. Biomed. Inform. 45(5), 870–878 (2012)

    Article  Google Scholar 

  27. Li, J., et al.: Biocreative V CDR task corpus: a resource for chemical disease relation extraction. Database 2016 (2016)

    Google Scholar 

  28. Liu, Y., Guo, Y., Bakker, E.M., Lew, M.S.: Learning a recurrent residual fusion network for multimodal matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4107–4116 (2017)

    Google Scholar 

  29. Lo, B.: Sharing clinical trial data: maximizing benefits, minimizing risk. Jama 313(8), 793–794 (2015)

    Article  Google Scholar 

  30. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)

    Article  Google Scholar 

  31. Miftahutdinov, Z., Tutubalina, E.: Deep neural models for medical concept normalization in user-generated texts. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 393–399 (2019)

    Google Scholar 

  32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  33. Mork, J.G., Jimeno-Yepes, A., Aronson, A.R.: The NLM medical text indexer system for indexing biomedical literature. In: BioASQ@ CLEF (2013)

    Google Scholar 

  34. NLM: Umls glossary (2016). http://www.nlm.nih.gov/research/umls/new_users/glossary.html

  35. Phan, M.C., Sun, A., Tay, Y.: Robust representation learning of biomedical names. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3275–3285 (2019)

    Google Scholar 

  36. Pradhan, S., Elhadad, N., Chapman, W.W., Manandhar, S., Savova, G.: Semeval-2014 task 7: Analysis of clinical text. In: SemEval@ COLING, pp. 54–62 (2014)

    Google Scholar 

  37. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3973–3983 (2019)

    Google Scholar 

  38. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  39. Sen, A., et al.: The representativeness of eligible patients in type 2 diabetes trials: a case study using gist 2.0. J. Am. Med. Inform. Assoc. 25(3), 239–247 (2018)

    Google Scholar 

  40. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2014)

    Article  Google Scholar 

  41. Sung, M., Jeon, H., Lee, J., Kang, J.: Biomedical entity representations with synonym marginalization. ar**v preprint ar**v:2005.00239 (2020)

  42. Suominen, H., et al.: Overview of the ShARe/CLEF eHealth evaluation lab 2013. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 212–231. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_24

    Chapter  Google Scholar 

  43. Tutubalina, E., Kadurin, A., Miftahutdinov, Z.: Fair evaluation in concept normalization: a large-scale comparative analysis for bert-based models. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6710–6716 (2020)

    Google Scholar 

  44. Tutubalina, E., Miftahutdinov, Z., Nikolenko, S., Malykh, V.: Medical concept normalization in social media posts with recurrent neural networks. J. Biomed. Inform. 84, 93–102 (2018)

    Article  Google Scholar 

  45. Van Mulligen, E., Afzal, Z., Akhondi, S.A., Vo, D., Kors, J.A.: Erasmus MC at CLEF eHealth 2016: Concept recognition and coding in French texts. CLEF (2016)

    Google Scholar 

  46. Wishart, D.S., et al.: Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(suppl\_1), D668–D672 (2006)

    Google Scholar 

  47. Wright, D., Katsis, Y., Mehta, R., Hsu, C.N.: Normco: deep disease normalization for biomedical knowledge base construction. In: Automated Knowledge Base Construction (2019). https://openreview.net/forum?id=BJerQWcp6Q

  48. Wu, P., Hoi, S.C., **a, H., Zhao, P., Wang, D., Miao, C.: Online multimodal deep similarity learning with application to image retrieval. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 153–162 (2013)

    Google Scholar 

  49. Zhao, S., Liu, T., Zhao, S., Wang, F.: A neural multi-task learning framework to jointly model medical named entity recognition and normalization. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 817–824 (2019)

    Google Scholar 

  50. Zhavoronkov, A., et al.: Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37(9), 1038–1040 (2019)

    Article  Google Scholar 

  51. Zhu, M., Celikkaya, B., Bhatia, P., Reddy, C.K.: Latte: Latent type modeling for biomedical entity linking. ar**v preprint ar**v:1911.09787 (2019)

Download references

Acknowledgements

Research on academic corpora was carried out by Z.M. and supported by RFBR, project no. 19–37-90074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfat Miftahutdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miftahutdinov, Z., Kadurin, A., Kudrin, R., Tutubalina, E. (2021). Drug and Disease Interpretation Learning with Biomedical Entity Representation Transformer. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation