Photocatalytic Water Pollutant Treatment: Fundamental, Analysis and Benchmarking

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

Power-free, light-driven catalysis-based water treatment is a green approach compared to chemical-based water treatment techniques. In this context, a broad range of photocatalytic material is demonstrated for organic water pollutant treatment. However, understanding catalysis reaction at pollutant environment and by-product formation are ambiguous. In this view, this chapter discusses insights of photocatalysis in organic water pollutant treatment at different pollutants (textile dye, pharmaceutical drug and pesticide) using TiO2 as benchmarking photocatalyst. The analytical tools for evaluating the light-active and colourless pollutant before and after photocatalytic experiments are elaborately discussed. A comprehensive discussion on TiO2-based photocatalysis at different strategies such as metal do**, coated on host surface, and varying pH of the solution are clearly explaining the interrelationship between properties of semiconductor catalysts, processing parameters and photocatalytic performance. This chapter is resourceful for fundamental researchers on how to choose the photocatalysis experimental techniques for organic water pollutant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedmann, D., Mendive, C., & Bahnemann, D. (2010). TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental, 99, 398–406. https://doi.org/10.1016/j.apcatb.2010.05.014.

    Article  CAS  Google Scholar 

  2. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38. https://doi.org/10.1038/238037a0.

    Article  CAS  Google Scholar 

  3. Chong, M. N., **, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44, 2997–3027.

    Article  CAS  Google Scholar 

  4. Qian, R., et al. (2019). Charge carrier trap**, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 335, 78–90. https://doi.org/10.1016/j.cattod.2018.10.053.

    Article  CAS  Google Scholar 

  5. Dong, S., et al. (2015b). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Advances, 5, 14610–14630. https://doi.org/10.1039/C4RA13734E.

    Article  CAS  Google Scholar 

  6. Mahlambi, M., Ngila, J., & Mamba, B. (2015a). Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles—A review. Journal of Nanomaterials, 2015, 790173. https://doi.org/10.1155/2015/790173.

    Article  CAS  Google Scholar 

  7. Chen, S., & Wang, L.-W. (2012). Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chemistry of Materials, 24, 3659–3666. https://doi.org/10.1021/cm302533s.

    Article  CAS  Google Scholar 

  8. Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 4, 37003–37026. https://doi.org/10.1039/C4RA06658H.

    Article  CAS  Google Scholar 

  9. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 114, 9919–9986. https://doi.org/10.1021/cr5001892.

    Article  CAS  Google Scholar 

  10. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110, 6446–6473. https://doi.org/10.1021/cr1002326.

    Article  CAS  Google Scholar 

  11. Yang, M.-Q., Gao, M., Hong, M., & Ho, G. W. (2018). Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 30, 1802894. https://doi.org/10.1002/adma.201802894.

    Article  CAS  Google Scholar 

  12. Dey, S., Subhasis Patro, S., Suresh Babu, N., Murthy, P. N., & Panda, S. K. (2017). Development and validation of a stability-indicating RP–HPLC method for estimation of atazanavir sulfate in bulk. Journal of Pharmaceutical Analysis, 7, 134–140. https://doi.org/10.1016/j.jpha.2013.12.002.

    Article  CAS  Google Scholar 

  13. Yu, J., Kiwi, J., Wang, T., Pulgarin, C., & Rtimi, S. (2019). Duality in the mechanism of hexagonal ZnO/CuxO nanowires inducing sulfamethazine degradation under solar or visible light. Catalysts, 9, 916.

    Article  CAS  Google Scholar 

  14. Wei, X., Koo, I., Kim, S., & Zhang, X. (2014). Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. Analyst, 139, 2507–2514. https://doi.org/10.1039/c3an02171h.

    Article  CAS  Google Scholar 

  15. Backes, C. W., Scheffer, F. R., Pereira, M. B., Teixeira, S. R., & Weibel, D. E. (2014). Photosensitised degradation of organic dyes by visible light using riboflavin adsorbed on the surface of TiO2 nanotubes. Journal of the Brazilian Chemical Society, 25, 2417–2424.

    CAS  Google Scholar 

  16. Vallejo-Pecharromán, B., Izquierdo-Reina, A., & Luque de Castro, M. D. (1999). Flow injection determination of chemical oxygen demand in leaching liquid. Analyst, 124, 1261–1264. https://doi.org/10.1039/A902443C.

    Article  Google Scholar 

  17. Matthews, R. W., Abdullah, M., & Low, G. K. C. (1990). Photocatalytic oxidation for total organic carbon analysis. Analytica Chimica Acta, 233, 171–179. https://doi.org/10.1016/S0003-2670(00)83476-5.

    Article  CAS  Google Scholar 

  18. Waters, A. (1993). Photocatalysis of TOC measurements. Filtration & Separation, 30, 533–535. https://doi.org/10.1016/0015-1882(93)80400-Q.

    Article  CAS  Google Scholar 

  19. Lin, Y. P., & Mehrvar, M. (2018). Photocatalytic treatment of an actual confectionery wastewater using ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology. Catalysts, 8, 409.

    Article  Google Scholar 

  20. Zhao, Y., Tao, C., **ao, G., & Su, H. (2017). Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film. RSC Advances, 7, 11211–11221. https://doi.org/10.1039/C6RA27295A.

    Article  CAS  Google Scholar 

  21. Parisi, M. L., Fatarella, E., Spinelli, D., Pogni, R., & Basosi, R. (2015). Environmental impact assessment of an eco-efficient production for coloured textiles. Journal of Cleaner Production, 108, 514–524. https://doi.org/10.1016/j.jclepro.2015.06.032.

    Article  CAS  Google Scholar 

  22. Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30, 953–971. https://doi.org/10.1016/j.envint.2004.02.001.

    Article  CAS  Google Scholar 

  23. Ogugbue, C. J., & Sawidis, T. (2011). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila Isolated From Industrial Effluent. Biotechnology Research International, 2011, 11. https://doi.org/10.4061/2011/967925.

    Article  CAS  Google Scholar 

  24. Hao, O. J., Kim, H., & Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30, 449–505. https://doi.org/10.1080/10643380091184237.

    Article  CAS  Google Scholar 

  25. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, 275–290. https://doi.org/10.1016/j.biori.2019.09.001.

    Article  Google Scholar 

  26. Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34, 233–261. https://doi.org/10.1080/10590501.2016.1236602.

    Article  CAS  Google Scholar 

  27. Pereira, L., & Alves, M. (2012). Dyes—Environmental impact and remediation. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (pp. 111–162). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1591-2_4.

    Chapter  Google Scholar 

  28. Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science., 4(1), 5. https://doi.org/10.4236/ns.2012.41004.

    Article  CAS  Google Scholar 

  29. Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2.

    Article  CAS  Google Scholar 

  30. Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6, 186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001.

    Article  CAS  Google Scholar 

  31. Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 328, 8–26. https://doi.org/10.1016/j.molcata.2010.05.023.

    Article  CAS  Google Scholar 

  32. Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., & Murugesan, V. (2002). Photocatalytic decomposition of leather dye: Comparative study of TiO2 supported on alumina and glass beads. Journal of Photochemistry and Photobiology A: Chemistry, 148, 153–159. https://doi.org/10.1016/S1010-6030(02)00085-0.

    Article  CAS  Google Scholar 

  33. Anwer, H., Mahmood, A., Lee, J., Kim, K.-H., Park, J.-W., & Yip, A. C. K. (2019). Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 12, 955–972. https://doi.org/10.1007/s12274-019-2287-0.

    Article  CAS  Google Scholar 

  34. Qin, N., Wei, W., Huang, C., & Mi, L. (2020). An efficient strategy for the fabrication of CuS as a highly excellent and recyclable photocatalyst for the degradation of organic dyes. Catalysts, 10, 40.

    Article  CAS  Google Scholar 

  35. Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017b). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12, 143. https://doi.org/10.1186/s11671-017-1904-4.

    Article  CAS  Google Scholar 

  36. Saad, A. M., et al. (2020). Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. Journal of Environmental Management, 258, 110043. https://doi.org/10.1016/j.jenvman.2019.110043.

    Article  CAS  Google Scholar 

  37. Nguyen, C. H., Fu, C.-C., & Juang, R.-S. (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413–427. https://doi.org/10.1016/j.jclepro.2018.08.110.

    Article  CAS  Google Scholar 

  38. Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 576, 201–207. https://doi.org/10.1016/j.jallcom.2013.04.112.

    Article  CAS  Google Scholar 

  39. Kuo, W. S., & Ho, P. H. (2001). Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 45, 77–83. https://doi.org/10.1016/S0045-6535(01)00008-X.

    Article  CAS  Google Scholar 

  40. Reza, K. M., Kurny, A., & Gulshan, F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Applied Water Science, 7, 1569–1578. https://doi.org/10.1007/s13201-015-0367-y.

    Article  CAS  Google Scholar 

  41. Poulios, I., Avranas, A., Rekliti, E., & Zouboulis, A. (2000). Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. Journal of Chemical Technology & Biotechnology, 75, 205–212. https://doi.org/10.1002/(sici)1097-4660(200003)75:3<205::aid-jctb201>3.0.co;2-l.

    Article  CAS  Google Scholar 

  42. Wang, N., Li, J., Zhu, L., Dong, Y., & Tang, H. (2008). Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. Journal of Photochemistry and Photobiology A: Chemistry, 198, 282–287. https://doi.org/10.1016/j.jphotochem.2008.03.021.

    Article  CAS  Google Scholar 

  43. Ling, C. M., Mohamed, A. R., & Bhatia, S. (2004). Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere, 57, 547–554. https://doi.org/10.1016/j.chemosphere.2004.07.011.

    Article  CAS  Google Scholar 

  44. Baran, W., Makowski, A., & Wardas, W. (2008). The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes and Pigments, 76, 226–230. https://doi.org/10.1016/j.dyepig.2006.08.031.

    Article  CAS  Google Scholar 

  45. Waghmode, T. R., Kurade, M. B., Sapkal, R. T., Bhosale, C. H., Jeon, B.-H., & Govindwar, S. P. (2019). Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. Journal of Hazardous Materials, 371, 115–122. https://doi.org/10.1016/j.jhazmat.2019.03.004.

    Article  CAS  Google Scholar 

  46. Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In K. R. Hakeem, M. S. Akhtar, & S. N. A. Abdullah (Eds.), Plant, soil and microbes: Vol. 1. Implications in crop science (pp. 253–269). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-27455-3_13.

    Chapter  Google Scholar 

  47. Bourguet, D., & Guillemaud, T. (2016). The hidden and external costs of pesticide use. In E. Lichtfouse (Ed.), Sustainable agriculture reviews. (Vol. 19, pp. 35–120). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-26777-7_2.

    Chapter  Google Scholar 

  48. Sabarwal, A., Kumar, K., & Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103–114. https://doi.org/10.1016/j.etap.2018.08.018.

    Article  CAS  Google Scholar 

  49. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148–148. https://doi.org/10.3389/fpubh.2016.00148.

    Article  Google Scholar 

  50. Kanan, S., Moyet, M. A., Arthur, R. B., & Patterson, H. H. (2020). Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews, 62, 1–65. https://doi.org/10.1080/01614940.2019.1613323.

    Article  CAS  Google Scholar 

  51. Cruz, M., et al. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 416, 1013–1021. https://doi.org/10.1016/j.apsusc.2015.09.268.

    Article  CAS  Google Scholar 

  52. Bhoi, Y. P., Behera, C., Majhi, D., Equeenuddin, S. M., & Mishra, B. G. (2018). Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi2W2O9 heterojunctions with a hierarchical microspherical structure. New Journal of Chemistry, 42, 281–292. https://doi.org/10.1039/C7NJ03390G.

    Article  CAS  Google Scholar 

  53. Malato, S., Cáceres, J., Fernández-Alba, A. R., Piedra, L., Hernando, M. D., Agüera, A., & Vial, J. (2003). Photocatalytic treatment of diuron by solar photocatalysis: Evaluation of main intermediates and toxicity. Environmental Science & Technology, 37, 2516–2524. https://doi.org/10.1021/es0261170.

    Article  CAS  Google Scholar 

  54. Moctezuma, E., Leyva, E., Palestino, G., & de Lasa, H. (2007). Photocatalytic degradation of methyl parathion: Reaction pathways and intermediate reaction products. Journal of Photochemistry and Photobiology A: Chemistry, 186, 71–84. https://doi.org/10.1016/j.jphotochem.2006.07.014.

    Article  CAS  Google Scholar 

  55. Ramacharyulu, P. V. R. K., Praveen Kumar, J., Prasad, G. K., & Srivastava, A. R. (2015). Synthesis, characterization and photocatalytic activity of Ag–TiO2 nanoparticulate film. RSC Advances, 5, 1309–1314. https://doi.org/10.1039/C4RA10249E.

    Article  CAS  Google Scholar 

  56. Chen, H., Shen, M., Chen, R., Dai, K., & Peng, T. (2011). Photocatalytic degradation of commercial methyl parathion in aqueous suspension containing La-doped TiO2 nanoparticles. Environmental Technology, 32, 1515–1522. https://doi.org/10.1080/09593330.2010.543927.

    Article  CAS  Google Scholar 

  57. Arévalo Pérez, J. C., et al. (2019). Photocatalytic treatment of pesticides using TiO2 doped with rare earth. https://doi.org/10.5772/intechopen.84677.

  58. Sacco, O., Vaiano, V., Han, C., Sannino, D., & Dionysiou, D. D. (2015). Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental, 164, 462–474. https://doi.org/10.1016/j.apcatb.2014.09.062.

    Article  CAS  Google Scholar 

  59. Belver, C., Han, C., Rodriguez, J. J., & Dionysiou, D. D. (2017). Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catalysis Today, 280, 21–28. https://doi.org/10.1016/j.cattod.2016.04.029.

    Article  CAS  Google Scholar 

  60. Miguel, N., Ormad, M. P., Mosteo, R., & Ovelleiro, J. L. (2012). Photocatalytic degradation of pesticides in natural water: Effect of hydrogen peroxide. International Journal of Photoenergy, 2012, 371714. https://doi.org/10.1155/2012/371714.

    Article  CAS  Google Scholar 

  61. Vela, N., Calín, M., Yáñez-Gascón, M. J., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2018). Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 353, 271–278. https://doi.org/10.1016/j.jphotochem.2017.11.040.

    Article  CAS  Google Scholar 

  62. Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008.

    Article  CAS  Google Scholar 

  63. Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of The Total Environment, 409, 3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053.

    Article  CAS  Google Scholar 

  64. Bilgin Simsek, E. (2017). Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Applied Catalysis B: Environmental, 200, 309–322. https://doi.org/10.1016/j.apcatb.2016.07.016.

    Article  CAS  Google Scholar 

  65. Gar Alalm, M., Tawfik, A., & Ookawara, S. (2016). Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. Journal of Environmental Chemical Engineering, 4, 1929–1937. https://doi.org/10.1016/j.jece.2016.03.023.

    Article  CAS  Google Scholar 

  66. He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141. https://doi.org/10.1016/j.apcatb.2015.09.015.

    Article  CAS  Google Scholar 

  67. Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46–52. https://doi.org/10.1016/j.desal.2009.11.003.

    Article  CAS  Google Scholar 

  68. Jallouli, N., et al. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical Engineering Journal, 334, 976–984. https://doi.org/10.1016/j.cej.2017.10.045.

    Article  CAS  Google Scholar 

  69. Rueda-Marquez, J. J., Levchuk, I., Fernández Ibañez, P., & Sillanpää, M. (2020). A critical review on application of photocatalysis for toxicity reduction of real wastewaters. Journal of Cleaner Production, 258, 120694. https://doi.org/10.1016/j.jclepro.2020.120694.

    Article  CAS  Google Scholar 

  70. Turan, N. B., Erkan, H. S., Engin, G. O., & Bilgili, M. S. (2019). Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Safety and Environmental Protection, 130, 238–249. https://doi.org/10.1016/j.psep.2019.08.014.

    Article  CAS  Google Scholar 

  71. Blaise, C., Gagné, F., Férard, J. F., & Eullaffroy, P. (2008). Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology, 23, 591–598. https://doi.org/10.1002/tox.20402.

    Article  CAS  Google Scholar 

  72. Chen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017a). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013.

    Article  CAS  Google Scholar 

  73. Fostier, A. H., Pereira, M. S. S., Rath, S., & Guimarães, J. R. (2008). Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere, 72, 319–324. https://doi.org/10.1016/j.chemosphere.2008.01.067.

    Article  CAS  Google Scholar 

  74. Molinari, R., & Argurio, P. (2017). Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: A preliminary study. Water Research, 109, 327–336. https://doi.org/10.1016/j.watres.2016.11.054.

    Article  CAS  Google Scholar 

  75. Litter, M. I. (2009). Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis. In H. I. de Lasa & B. Serrano Rosales (Eds.), Advances in chemical engineering (Vol. 36, pp. 37–67). Academic. https://doi.org/10.1016/S0065-2377(09)00402-5.

    Chapter  Google Scholar 

  76. Li, Y., Cui, W., Liu, L., Zong, R., Yao, W., Liang, Y., & Zhu, Y. (2016). Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 199, 412–423. https://doi.org/10.1016/j.apcatb.2016.06.053.

    Article  CAS  Google Scholar 

  77. Gusain, R., Gupta, K., Joshi, P., & Khatri, O. P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 272, 102009. https://doi.org/10.1016/j.cis.2019.102009.

    Article  CAS  Google Scholar 

  78. Cheng, L., Liu, S., He, G., & Hu, Y. (2020). The simultaneous removal of heavy metals and organic contaminants over a Bi2WO6/mesoporous TiO2 nanotube composite photocatalyst. RSC Advances, 10, 21228–21237. https://doi.org/10.1039/D0RA03430D.

    Article  CAS  Google Scholar 

  79. Loeb, S. K., et al. (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environmental Science & Technology, 53, 2937–2947. https://doi.org/10.1021/acs.est.8b05041.

    Article  CAS  Google Scholar 

  80. Dong, S., et al. (2015a). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Advances, 5, 14610–14630. https://doi.org/10.1039/C4RA13734E.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.P. thanks to Sêr Cymru II—Rising Star Fellowship program for supporting this work through the Welsh government and European Regional Development Fund (80761-SU-102 (West)). C.T. and S.P. thank Royal Society, UK (IEC\R3\170085-International Exchanges 2017 Cost Share) for partially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhagar Pitchaimuthu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davies, K.R., Jones, B., Terashima, C., Fujishima, A., Pitchaimuthu, S. (2021). Photocatalytic Water Pollutant Treatment: Fundamental, Analysis and Benchmarking. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_16

Download citation

Publish with us

Policies and ethics

Navigation