Machine Learning, Big Data, and Spatial Tools: A Combination to Reveal Complex Facts That Impact Environmental Health

  • Chapter
  • First Online:
Geospatial Technology for Human Well-Being and Health

Abstract

By definition, human health and well-being are due to a complex interaction between a myriad of factors, a set of interactions for which we do not have a complete theoretical model, but often have an array of relevant data describing many aspects of this complex system. Machine learning is ideally suited for such situations. Over the last two decades, machine learning has found many uses in business and science and technology. As a broad subfield of artificial intelligence, machine learning is concerned with algorithms and techniques that allow computers to “learn” by example. The major focus of machine learning is to extract information from data automatically by computational and statistical methods. Over the last decade, there has been considerable progress in develo** a machine learning methodology for a variety of Environmental Health and Earth Science applications. In this chapter, we will review some examples of how machine learning has already been useful in environmental studies and some likely future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 June 2022

    In chapters 12 & 13, the names of one of the authors have been inadvertently published as ‘Lakitha Omal Harindha Wijerante’ which has been updated as ‘Lakitha Omal Harindha Wijeratne’.

Notes

  1. 1.

    http://scikit-learn.org/stable/.

  2. 2.

    https://www.tensorflow.org.

  3. 3.

    http://caffe.berkeleyvision.org.

  4. 4.

    http://spark.apache.org/mllib/.

  5. 5.

    https://cran.r-project.org.

  6. 6.

    https://julialang.org/#tab-math

  7. 7.

    https://www.python.org.

  8. 8.

    https://www.mathworks.com/solutions/machine-learning.html.

References

  • Afromowitz, M.A., J.B. Callis, D.M. Heimbach, L.A. Desoto, and M.K. Norton. 1988. Multispectral imaging of burn wounds—a new clinical instrument for evaluating burn depth. IEEE Transactions on Biomedical Engineering 35(10): 842–850. ISSN 0018-9294. https://doi.org/10.1109/10.7291.

    Article  Google Scholar 

  • Ahmad, Z., W. Choi, N. Sharma, J. Zhang, Q. Zhong, D.-Y. Kim, Z. Chen, Y. Zhang, R. Han, D. Shim, et al. 2016. Devices and circuits in CMOS for thz applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), pp. 29–8. New York: IEEE.

    Google Scholar 

  • Alavi, Amir H., Amir H. Gandomi, and David J. Lary. 2016. Progress of Machine Learning in Geosciences.

    Google Scholar 

  • Albayrak, A., J.C. Wei, Maksym Petrenko, D.J. Lary, and G.G. Leptoukh. 2011. Modis aerosol optical depth bias adjustment using machine learning algorithms. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Andrews, Charles P., Paul H. Ratner, Benjamin R. Ehler, Edward G. Brooks, Brad H. Pollock, Dan A. Ramirez, and Robert L. Jacobs. 2013. The mountain cedar model in clinical trials of seasonal allergic rhinoconjunctivitis. Annals of Allergy, Asthma and Immunology 111(1): 9–13.

    Article  Google Scholar 

  • Angeletti, C., N.R. Harvey, V. Khomitch, A.H. Fischer, R.M. Levenson, and D.L. Rimm. 2005. Detection of malignancy in cytology specimens using spectral-spatial analysis. Laboratory Investigation 85(12): 1555–1564. ISSN 0023-6837. https://doi.org/10.1038/labinvest.3700357.

    Article  Google Scholar 

  • Arizmendi, C.M., J.R. Sanchez, N.E. Ramos, and G.I. Ramos. 1993. Time series predictions with neural nets: application to airborne pollen forecasting. International Journal of Biometeorology 37(3): 139–144.

    Article  Google Scholar 

  • Berman, Jesse D., Patrick N. Breysse, Ronald H. White, and Frank C. Curriero. 2012. Health-related benefits of attaining the daily and annual pm2. 5 air quality standards and stricter alternative standards. In A103: Health Services Research and Administrative Databases, pp. A2317–A2317. New York: American Thoracic Society.

    Chapter  Google Scholar 

  • Bishop, Christopher M. 1995. Neural networks for pattern recognition. Oxford: Oxford University.

    Google Scholar 

  • Bouet, Christel, Guy Cautenet, Gilles Bergametti, Beatrice Marticorena, Martin C. Todd, and Richard Washington. 2012. Sensitivity of desert dust emissions to model horizontal grid spacing during the Bodele dust experiment 2005. Atmospheric Environment 50: 377–380.

    Article  Google Scholar 

  • Breiman, Leo. 1984. Classification and regression trees. In The Wadsworth Statistics/Probability Series. Belmont: Wadsworth International Group.

    Google Scholar 

  • Breiman, L. 2001. Random forests. Machine Learning 45(1), 5–32. Times Cited: 3621.

    Google Scholar 

  • Britton, J., I Pavord, K Richards, A Knox, A Wisniewski, I Wahedna, W Kinnear, A Tattersfield, and S Weiss. 1994. Factors influencing the occurrence of airway hyperreactivity in the general population: the importance of atopy and airway calibre. European Respiratory Journal 7(5): 881–887.

    Article  Google Scholar 

  • Brown, M.E., D.J. Lary, and H. Mussa. 2006. Using neural nets to derive sensor-independent climate quality vegetation data based on AVHRR, spot-vegetation, SeaWiFS and MODIS. In AGU Spring Meeting Abstracts.

    Google Scholar 

  • Brown, Molly E., David J Lary, Anton Vrieling, Demetris Stathakis, and Hamse Mussa. 2008. Neural networks as a tool for constructing continuous ndvi time series from avhrr and modis. International Journal of Remote Sensing 29(24): 7141–7158.

    Google Scholar 

  • Carrasco, O., R. Gomez, A. Chainani, and W. Roper. 2003. Hyperspectral imaging applied to medical diagnoses and food safety. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), vol. 5097, pp. 215–221. ISBN 0277-786X 0-8194-4957-1. https://doi.org/10.1117/12.502589.

  • Castellano-Méndez, M., M.J. Aira, I. Iglesias, V. Jato, and W. González-Manteiga. 2005. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. International Journal of Biometeorology 49(5): 310–316.

    Article  Google Scholar 

  • Chang, Howard H., Anqi Pan, David J. Lary, Lance A. Waller, Lei Zhang, Bruce T. Brackin, Richard W. Finley, and Fazlay S. Faruque. 2019. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS. Environmental Monitoring and Assessment 191(280): 1–10.

    Google Scholar 

  • Choi, Wooyeol, Qian Zhong, Navneet Sharma, Yaming Zhang, Ruonan Han, Z Ahmad, Dae-Yeon Kim, Sandeep Kshattry, Ivan R Medvedev, David J Lary, et al. 2019. Opening terahertz for everyday applications. IEEE Communications Magazine 57(8): 70–76.

    Google Scholar 

  • Cornwall, Warren. 2015. Deepwater horizon: After the oil. Science 348(6230): 22–29. https://doi.org/10.1126/science.348.6230.22.

    Article  Google Scholar 

  • Cortes, C. and V. Vapnik. 1995. Support-vector networks. Machine Learning 20(3): 273–297. Times Cited: 3429.

    Google Scholar 

  • Csépe, Z., László Makra, Dimitris Voukantsis, István Matyasovszky, Gábor Tusnády, Kostas Karatzas, and Michel Thibaudon. 2014. Predicting daily ragweed pollen concentrations using computational intelligence techniques over two heavily polluted areas in Europe. Science of the Total Environment 476: 542–552.

    Article  Google Scholar 

  • D’amato, Gennaro, and Frits Th M. Spieksma. 1991. Allergenic pollen in Europe. Grana 30(1): 67–70.

    Google Scholar 

  • Demuth, Howard B., Mark H. Beale, Orlando De Jess, and Martin T. Hagan. 2014. Neural network design. USA: Martin Hagan, 2nd ed. ISBN 0971-7321-16, 978-0-97-173211-7.

    Google Scholar 

  • Domingos, Pedro. 2015. The master algorithm: How the quest for the ultimate learning machine will remake our world. London: Basic Books.

    Google Scholar 

  • Edelman, G.J., E. Gaston, T.G. van Leeuwen, P.J. Cullen, and M.C.G. Aalders. 2012. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Science International 223(1–3): 28–39. ISSN 0379-0738. https://doi.org/10.1016/j.forsciint.2012.09.012.

    Article  Google Scholar 

  • EPA. 2019. Table of historical particulate matter (pm) national ambient air quality standards (NAAQS)—US EPA, history of the NAAQS for particulate matter, from 1971 to 2012. https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs.

  • Ernst, P., H. Ghezzo, and M.R. Becklake. 2002. Risk factors for bronchial hyperresponsiveness in late childhood and early adolescence. European Respiratory Journal 20(3): 635–639.

    Article  Google Scholar 

  • Esch, Robert E., Cecelia J. Hartsell, Rodger Crenshaw, and Robert S. Jacobson. 2001. Common allergenic pollens, fungi, animals, and arthropods. Clinical Reviews in Allergy and Immunology 21(2): 261–292.

    Article  Google Scholar 

  • Esworthy, Robert. 2012. 2006 national ambient air quality standards (NAAQS) for fine particulate matter (pm2. 5): Designating nonattainment areas. In Library of Congress, Congressional Research Service.

    Google Scholar 

  • Esworthy, Robert and James E. McCarthy. 2013. The national ambient air quality standards (NAAQS) for particulate matter (pm): EPA’s 2006 revisions and associated issues. In Library of Congress, Congressional Research Service.

    Google Scholar 

  • Etchie, Tunde O., Ayotunde T. Etchie, Gregory O. Adewuyi, Ajay Pillarisetti, Saravanadevi Sivanesan, Kannan Krishnamurthi, and Narendra K. Arora. 2018. The gains in life expectancy by ambient pm2. 5 pollution reductions in localities in Nigeria. Environmental Pollution 236: 146–157.

    Article  Google Scholar 

  • Faruque, Fazlay S., Hui Li, Worth B. Williams, Lance A. Waller, Bruce T. Brackin, Lei Zhang, Kim A. Grimes, and Richard W Finley. 2014. Geomedstat: An integrated spatial surveillance system to track air pollution and associated healthcare events. Geospatial Health, pp. S631–S646.

    Google Scholar 

  • Feng, Y.Z., and D.W. Sun. 2012. Application of hyperspectral imaging in food safety inspection and control: A review. Critical Reviews in Food Science and Nutrition 52(11): 1039–1058. ISSN 1040-8398. https://doi.org/10.1080/10408398.2011.651542.

    Article  Google Scholar 

  • Fingas, Marvin. 2010. Oil spill science and technology. London: Gulf Professional Publishing. ISBN: 978-1-85617-943-0.

    Google Scholar 

  • Fingas, Mervin F., and Carl E. Brown. 1997. Review of oil spill remote sensing. Spill Science and Technology Bulletin 4(4): 199–208. ISSN 1353-2561. https://doi.org/10.1016/S1353-2561(98)00023-1. http://www.sciencedirect.com/science/article/pii/S1353256198000231. The Second International Symposium on Oil Spills.

  • Fingas, Merv, and Carl Brown. 2014. Review of oil spill remote sensing. Marine Pollution Bulletin 83(1): 9–23. ISSN 0025-326X. https://doi.org/10.1016/j.marpolbul.2014.03.059. http://www.sciencedirect.com/science/article/pii/S0025326X14002021.

  • Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The elements of statistical learning, vol. 1. Berlin: Springer.

    Google Scholar 

  • Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot. 2010. Variable selection using random forests. Pattern Recognition Letters 31(14): 2225–2236.

    Article  Google Scholar 

  • Giannadaki, Despina, Jos Lelieveld, and Andrea Pozzer. 2016. Implementing the US air quality standard for pm 2.5 worldwide can prevent millions of premature deaths per year. Environmental Health 15(1): 88.

    Google Scholar 

  • Govender, M., K. Chetty, and H. Bulcock. 2007. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa 33(2): 145–151. ISSN 0378-4738. <Go to ISI>://WOS:000246960100001.

    Google Scholar 

  • Gowen, A.A., C.P. O’Donnell, P.J. Cullen, G. Downey, and J.M. Frias. 2007. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology 18(12): 590–598. ISSN 0924-2244. https://doi.org/10.1016/j.tifs.2007.06.001.

    Article  Google Scholar 

  • Guarnieri, Michael and John R. Balmes. 2014. Outdoor air pollution and asthma. The Lancet 383(9928): 1581–1592.

    Article  Google Scholar 

  • Haykin, Simon S. 1994. Neural networks: A comprehensive foundation. New York: Macmillan. 93028092 Simon Haykin. ill.; 26 cm. Includes bibliographical references (p. 635–690) and index.

    Google Scholar 

  • Haykin, Simon S. 1999. Neural networks: A comprehensive foundation. Upper Saddle River: Prentice Hall, 2nd ed. 98007011 Simon Haykin. ill.; 25 cm. Includes bibliographical references (p. 796–836) and index.

    Google Scholar 

  • Haykin, Simon S. 2001. Kalman filtering and neural networks. In Adaptive and learning systems for signal processing, communications, and control. New York: Wiley. 2001049240 ed. by Simon Haykin. ill.; 24 cm. “A Wiley Interscience publication.” Includes bibliographical references and index.

    Google Scholar 

  • Haykin, Simon S. 2007. New directions in statistical signal processing: From systems to brain. In Neural Information Processing Series. Cambridge: MIT Press.

    Google Scholar 

  • Ho, T.K. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8): 832–844.

    Article  Google Scholar 

  • Howard, Lauren Eileen and Estelle Levetin. 2014. Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development. Annals of Allergy, Asthma and Immunology 113(6): 641–646.

    Article  Google Scholar 

  • Jay, Steven C., Rick L. Lawrence, Kevin S. Repasky, Lisa J. Rew, and IEEE. 2010. Detection of leafy spurge using hyper-spectral-spatial-temporal imagery. 2010 IEEE International Geoscience and Remote Sensing Symposium, pp. 4374–4376. https://doi.org/10.1109/igarss.2010.5652580.

  • Johnson, Philip R.S., and John J. Graham. 2005. Fine particulate matter national ambient air quality standards: Public health impact on populations in the northeastern united states. Environmental Health Perspectives 113 (9): 1140–1147.

    Article  Google Scholar 

  • Kasprzyk, Idalia. 2008. Non-native ambrosia pollen in the atmosphere of rzeszów (se poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. International Journal of Biometeorology 52(5): 341–351

    Article  Google Scholar 

  • Keith, Charlie J., Kevin S. Repasky, Rick L. Lawrence, Steven C. Jay, and John L. Carlsten. 2009. Monitoring effects of a controlled subsurface carbon dioxide release on vegetation using a hyperspectral imager. International Journal of Greenhouse Gas Control 3(5): 626–632. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2009.03.003.

    Article  Google Scholar 

  • Kinney, Patrick L. 2008. Climate change, air quality, and human health. American Journal of Preventive Medicine 35(5): 459–467.

    Article  Google Scholar 

  • Kneen, M.A., David J. Lary, William A. Harrison, Harold J. Annegarn, and Tom H. Brikowski. 2016. Interpretation of satellite retrievals of pm2.5 over the Southern African interior. Atmospheric Environment 128: 53–64.

    Article  Google Scholar 

  • Kokaly, Raymond F., Brady R. Couvillion, JoAnn M. Holloway, Dar A. Roberts, Susan L. Ustin, Seth H. Peterson, Shruti Khanna, and Sarai C. Piazza. 2013. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sensing of Environment 129(0): 210–230. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2012.10.028. http://www.sciencedirect.com/science/article/pii/S0034425712004166.

  • Koren, Ilan, Yoram J. Kaufman, Richard Washington, Martin C. Todd, Yinon Rudich, J. Vanderlei Martins, and Daniel Rosenfeld. 2006. The bodele depression: A single spot in the Sahara that provides most of the mineral dust to the amazon forest. Environmental Research Letters 1(1): 014005.

    Article  Google Scholar 

  • Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. 2007. Supervised Machine Learning: A Review of Classification Techniques.

    Google Scholar 

  • Laaidi, Mohamed, Karine Laaidi, Jean-Pierre Besancenot, and Michel Thibaudon. 2003. Ragweed in France: an invasive plant and its allergenic pollen. Annals of Allergy, Asthma and Immunology 91(2): 195–201.

    Article  Google Scholar 

  • La Fontaine, Javier, Lawrence Lavery, and Karel Zuzak. 2014. The use of hyperspectral imaging (HSI) in wound healing. In Proceedings of SPIE, vol. 8979. ISBN 0277-786X 978-0-8194-9892-2. https://doi.org/10.1117/12.2041841.

  • Lary, D. 2007. Using neural networks for instrument cross-calibration. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Lary, David John. 2010. Artificial intelligence in geoscience and remote sensing. London: INTECH Open Access Publisher.

    Google Scholar 

  • Lary, David J. 2013. Using multiple big datasets and machine learning to produce a new global particulate dataset: A technology challenge case study. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Lary, David John. 2014. Bigdata and machine learning for public health. In Proceedings of the 142nd APHA Annual Meeting and Exposition 2014. Washington: APHA.

    Google Scholar 

  • Lary, D.J., and O. Aulov. 2008. Space-based measurements of HCL: Intercomparison and historical context. Journal of Geophysical Research: Atmospheres 113(D15).

    Google Scholar 

  • Lary, D.J., M.D. Müller, and H.Y. Mussa. 2003. Using neural networks to describe tracer correlations. Atmospheric Chemistry and Physics Discussions 3(6): 5711–5724.

    Google Scholar 

  • Lary, D.J., M.D. Müller, and H.Y. Mussa. 2004. Using neural networks to describe tracer correlations. Atmospheric Chemistry and Physics 4(1): 143–146.

    Article  Google Scholar 

  • Lary, David J., L.A. Remer, Devon MacNeill, Bryan Roscoe, and Susan Paradise. 2009. Machine learning and bias correction of modis aerosol optical depth. IEEE Geoscience and Remote Sensing Letters 6(4): 694–698.

    Article  Google Scholar 

  • Lary, D.J., A. Nikitkov, D. Stone, and Alexey Nikitkov. 2010. Which machine-learning models best predict online auction seller deception risk. In American Accounting Association AAA Strategic and Emerging Technologies.

    Google Scholar 

  • Lary, David J., Fazlay S. Faruque, Nabin Malakar, Alex Moore, Bryan Roscoe, Zachary L. Adams, and York Eggelston. 2014. Estimating the global abundance of ground level presence of particulate matter (pm2. 5). Geospatial Health 8(3): 611–630.

    Article  Google Scholar 

  • Lary, D.J., T. Lary, and B. Sattler. 2015. Using machine learning to estimate global pm2. 5 for environmental health studies. Environmental Health Insights 9(Suppl 1): 41.

    Google Scholar 

  • Lary, David J., Amir H. Alavi, Amir H. Gandomi, and Annette L. Walker. 2016a. Machine learning in geosciences and remote sensing. Geoscience Frontiers 7(1): 3–10.

    Article  Google Scholar 

  • Lary, David J., Amir H Alavi, Amir H Gandomi, and Annette L Walker. 2016b. Machine learning in geosciences and remote sensing. Geoscience Frontiers 7(1): 3–10.

    Google Scholar 

  • Lary, David J., Tatiana Lary, and B. Sattler. 2016c. Using machine learning to estimate global particulate matter for environmental health studies. Geoinformatics and Geostatistics: An Overview 4(4): doi–10.

    Google Scholar 

  • Lary, David J., Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle Levetin, Rebecca J. Allee, Nabin Malakar, Annette Walker, Hamse Mussa, Antonio Mannino, et al. 2018. Machine learning applications for earth observation. In Earth Observation Open Science and Innovation. ISSI Scientific Report Series, vol. 15, pp. 165–218. Berlin: Springer.

    Chapter  Google Scholar 

  • Lary, Maria-Anna, Leslie Allsop, and David John Lary. 2019. Using machine learning to examine the relationship between asthma and absenteeism. Environmental Modeling and Assessment 191(332), 1–9.

    Google Scholar 

  • Leifer, Ira, William J. Lehr, Debra Simecek-Beatty, Eliza Bradley, Roger Clark, Philip Dennison, Yongxiang Hu, Scott Matheson, Cathleen E. Jones, Benjamin Holt, Molly Reif, Dar A. Roberts, Jan Svejkovsky, Gregg Swayze, and Jennifer Wozencraft. 2012. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP deepwater horizon oil spill. Remote Sensing of Environment 124(0): 185–209. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2012.03.024. http://www.sciencedirect.com/science/article/pii/S0034425712001563.

  • Lewis, Walter Hepworth, Prathibha Vinay, and Vincent E. Zenger. 1983. Airborne and allergenic pollen of North America. New York: Johns Hopkins University Press.

    Google Scholar 

  • Liang, H. 2012. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Applied Physics a-Materials Science and Processing 106(2): 309–323. ISSN 0947-8396.

    Article  Google Scholar 

  • Liu, Peng, **aofeng Li, John J. Qu, Wenguang Wang, Chaofang Zhao, and William Pichel. 2011. Oil spill detection with fully polarimetric {UAVSAR} data. Marine Pollution Bulletin 62(12): 2611–2618. ISSN 0025-326X. https://doi.org/10.1016/j.marpolbul.2011.09.036. http://www.sciencedirect.com/science/article/pii/S0025326X11005248.

  • Liu, Y., A. MacFadyen, Z.G. Ji, and R.H. Weisberg. 2013. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise. Geophysical Monograph Series. New York: Wiley. ISBN 978-1-11-867182-5.

    Google Scholar 

  • Low, Ronald B., Leonard Bielory, Adnan I. Qureshi, Van Dunn, David F.E. Stuhlmiller, and David A. Dickey. 2006. The relation of stroke admissions to recent weather, airborne allergens, air pollution, seasons, upper respiratory infections, and asthma incidence, September 11, 2001, and day of the week. Stroke 37(4): 951–957.

    Article  Google Scholar 

  • Malakar, Nabin K., David J Lary, A Moore, D Gencaga, Bryan Roscoe, Arif Albayrak, and Jennifer Wei. 2012a. Estimation and bias correction of aerosol abundance using data-driven machine learning and remote sensing. In Proceedings of the 2012 Conference on Intelligent Data Understanding, pp. 24–30. New York: IEEE.

    Google Scholar 

  • Malakar, N.K., D.J. Lary, R. Allee, R. Gould, and D. Ko. 2012b. Towards automated ecosystem-based management: A case study of northern gulf of Mexico water. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Malakar, N.K., D.J. Lary, D. Gencaga, A. Albayrak, and J. Wei. 2013. Towards identification of relevant variables in the observed aerosol optical depth bias between modis and aeronet observations. In AIP Conference Proceedings, vol. 1553, pp. 69–76. College Park: AIP.

    Google Scholar 

  • Malakar, Nabin K., D.J. Lary, and B. Gross. 2018. Case studies of applying machine learning to physical observation. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Malkoff, D.B., and W.R. Oliver. 2000. Hyperspectral imaging applied to forensic medicine. In Progress in Biomedical Optics, vol. 1, pp. 108–116. ISBN 1017-2661 0-8194-3536-8. <Go to ISI>://WOS:000086469300013.

    Google Scholar 

  • Matheson, Eric M., Marty S. Player, Arch G. Mainous, Dana E. King, and Charles J. Everett. 2008. The association between hay fever and stroke in a cohort of middle aged and elderly adults. The Journal of the American Board of Family Medicine 21(3): 179–183.

    Article  Google Scholar 

  • McCulloch, W.S., and W. Pitts. 1943. Bulletin of Mathematical Biophysics, vol. 5, p. 115. https://doi.org/10.1007/BF02478259.

  • Medvedev, Ivan R., Robert Schueler, Jessica Thomas, O. Kenneth, Hyun-Joo Nam, Navneet Sharma, Qian Zhong, David J Lary, and Philip Raskin. 2016. Analysis of exhaled human breath via terahertz molecular spectroscopy. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp. 1–2. New York: IEEE.

    Google Scholar 

  • Mirabelli, Maria C., Ambarish Vaidyanathan, W. Dana Flanders, **aoting Qin, and Paul Garbe. 2016. Outdoor pm2. 5, ambient air temperature, and asthma symptoms in the past 14 days among adults with active asthma. Environmental Health Perspectives 124(12): 1882–1890.

    Article  Google Scholar 

  • Muller, M.G., T.A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z.M. Wang, C.W. Boone, R.R. Dasari, S.M. Shapshay, and M.S. Feld. 2003. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer 97(7): 1681–1692. ISSN 0008-543X. https://doi.org/10.1002/cncr.11255.

    Article  Google Scholar 

  • Nansen, Christian, Genpin Zhao, Nicole Dakin, Chunhui Zhao, and Shane R. Turner. 2015. Using hyperspectral imaging to determine germination of native Australian plant seeds. Journal of Photochemistry and Photobiology B-Biology 145: 19–24. ISSN 1011-1344. https://doi.org/10.1016/j.jphotobiol.2015.02.015.

    Article  Google Scholar 

  • Nathan, Brian J., and David J. Lary. 2019. Combining domain filling with a self-organizing map to analyze multi-species hydrocarbon signatures on a regional scale. Environmental Modeling and Assessment 191(337): 1–17.

    Google Scholar 

  • Nowosad, Jakub. 2015. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. International Journal of Biometeorology, 1–13.

    Google Scholar 

  • O, K.K., Q. Zhong, N. Sharma, W. Choi, R. Schueler, I. R. Medvedev, H.-J. Nam, P. Raskin, F. C. De Lucia, J. P. McMillan, et al. 2017. Demonstration of breath analyses using CMOS integrated circuits for rotational spectroscopy. In Proceedings of the International Workshop on Nanodevice Technologies, Hiroshima, Japan.

    Google Scholar 

  • Osowski, Stanislaw and Konrad Garanty. 2007. Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence 20(6): 745–755.

    Article  Google Scholar 

  • Oswalt, Matthew L., and Gailen D. Marshall. 2008. Ragweed as an example of worldwide allergen expansion. Allergy, Asthma and Clinical Immunology 4(3): 130.

    Article  Google Scholar 

  • Puc, Małgorzata. 2012. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). International Journal of Biometeorology 56(2): 395–401.

    Article  Google Scholar 

  • Ramirez, Daniel A. 1984. The natural history of mountain cedar pollinosis. Journal of Allergy and Clinical Immunology 73(1): 88–93.

    Article  Google Scholar 

  • Ramirez, J.P., D.J. Lary, N. Gans. 2015. Low-altitude terrestrial spectroscopy from a pushbroom sensor. Journal of Field Robotics, 1–16. https://doi.org/10.1002/rob.21624.

  • Rodríguez-Rajo, F.J., Gonzalo Astray, J.A. Ferreiro-Lage, M.J. Aira, M.V. Jato-Rodriguez, and Juan C. Mejuto. 2010. Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Networks 23(3): 419–425.

    Article  Google Scholar 

  • Safavian, S.R., and D. Landgrebe. 1991. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics 21(3): 660–674. ISSN 0018-9472. https://doi.org/10.1109/21.97458.

    Article  Google Scholar 

  • Sánchez-Mesa, J.A., C. Galán, J.A. Martínez-Heras, and C. Hervás-Martínez. 2002. The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clinical and Experimental Allergy 32(11): 1606–1612.

    Article  Google Scholar 

  • Sassen, Kenneth. 2008. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff. Geophysical Research Letters 35(18).

    Google Scholar 

  • Spangler, Lee H., Laura M. Dobeck, Kevin S. Repasky, Amin R. Nehrir, Seth D. Humphries, Jamie L. Barr, Charlie J. Keith, Joseph A. Shaw, Joshua H. Rouse, Alfred B. Cunningham, Sally M. Benson, Curtis M. Oldenburg, Jennifer L. Lewicki, Arthur W. Wells, J. Rodney Diehl, Brian R. Strazisar, Julianna E. Fessenden, Thom A. Rahn, James E. Amonette, Jon L. Barr, William L. Pickles, James D. Jacobson, Eli A. Silver, Erin J. Male, Henry W. Rauch, Kadie S. Gullickson, Robert Trautz, Yousif Kharaka, Jens Birkholzer, and Lucien Wielopolski. 2010. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface co2 detection techniques and transport models. Environmental Earth Sciences 60(2): 227–239. ISSN 1866-6280. https://doi.org/10.1007/s12665-009-0400-2.

    Article  Google Scholar 

  • Stark, Paul C., Louise M. Ryan, James L. McDonald, and Harriet A. Burge. 1997. Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia 13(3): 177–184.

    Article  Google Scholar 

  • Sveykovsky, J., and S. Muskat. 2006. Real-time detection of oil slick thickness patterns with a portable multispectral sensor. Technical report, July 31, 2006.

    Google Scholar 

  • Svejkovsky, Jan, Judd Muskat, and Joseph Mullin. 2009. Adding a multispectral aerial system to the oil spill response arsenal. Sea Technology 50(8): 17–+.

    Google Scholar 

  • Todd, Martin C., Richard Washington, Jose Vanderlei Martins, Oleg Dubovik, Gil Lizcano, Samuel M’Bainayel, and Sebastian Engelstaedter. 2007. Mineral dust emission from the Bodele depression, Northern Chad, during BodEx 2005. Journal of Geophysical Research-Atmospheres 112(D6).

    Google Scholar 

  • Tränkle, Eberhard and Bernd Mielke. 1994. Simulation and analysis of pollen coronas. Applied Optics 33(21): 4552–4562.

    Article  Google Scholar 

  • Vapnik, Vladimir Naumovich. 1982. Estimation of dependences based on empirical data. In Springer Series in Statistics. New York: Springer.

    Google Scholar 

  • Vapnik, Vladimir Naumovich. 1995. The nature of statistical learning theory. New York: Springer.

    Book  Google Scholar 

  • Vapnik, Vladimir Naumovich. 2000. The nature of statistical learning theory. In Statistics for Engineering and Information Science, 2nd edn. New York: Springer.

    Google Scholar 

  • Vapnik, Vladimir Naumovich. 2006. Estimation of dependences based on empirical data; empirical inference science: Afterword of 2006. In Information Science and Statistics, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Voukantsis, Dimitris, Harri Niska, Kostas Karatzas, Marina Riga, Athanasios Damialis, and Despoina Vokou. 2010. Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmospheric Environment 44(39): 5101–5111

    Article  Google Scholar 

  • Washington, R., and M.C. Todd. 2005. Atmospheric controls on mineral dust emission from the Bodele depression, chad: The role of the low level jet. Geophysical Research Letters 32 (17).

    Google Scholar 

  • Washington, R., M.C. Todd, G. Lizcano, I. Tegen, C. Flamant, I. Koren, P. Ginoux, S. Engelstaedter, C.S. Bristow, C.S. Zender, A.S. Goudie, A. Warren, and J.M. Prospero. 2006a. Links between topography, wind, deflation, lakes and dust: The case of the Bodele depression, chad. Geophysical Research Letters 33(9).

    Google Scholar 

  • Washington, R., M.C. Todd, S. Engelstaedter, S. Mbainayel, and F. Mitchell. 2006b. Dust and the low-level circulation over the Bodele depression, Chad: Observations from BodEx 2005. Journal of Geophysical Research-Atmospheres 111(D3).

    Google Scholar 

  • Wayne, Peter, Susannah Foster, John Connolly, Fakhri Bazzaz, and Paul Epstein. 2002. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia l.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma and Immunology 88(3): 279–282.

    Article  Google Scholar 

  • Weinhold, Bob. 2013. New primary standard set for fine particulate matter.

    Book  Google Scholar 

  • WHO. 7 million premature deaths annually linked to air pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/. Accessed: 2016-08-29.

  • Wu, Daji, Gebreab K. Zewdie, Xun Liu, Melanie Kneed, and David J. Lary. 2017. Insights into the morphology of the East Asia pm2.5 annual cycle provided by machine learning. Environmental Health Insights 11: 1–7.

    Article  Google Scholar 

  • Wu, Daji, David J. Lary, Gebreab K Zewdie, and Xun Liu. 2019. Using machine learning to understand the temporal morphology of the pm2.5 annual cycle in East Asia. Environmental Monitoring and Assessment 191(272), 1–14.

    Google Scholar 

  • Zewdie Gebreab, and David J. Lary. 2018. Applying machine learning to estimate allergic pollen using environmental, land surface and NEXRAD radar parameters. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Zewdie, Gebreab K., David J. Lary, Estelle Levetin, and Gemechu F. Garuma. 2019a. Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. International Journal of Environmental Research and Public Health 16(11): 1992.

    Article  Google Scholar 

  • Zewdie, Gebreab K., David J. Lary, Xun Liu, Daji Wu, and Estelle Levetin. 2019b. Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data. Environmental Monitoring and Assessment 191(7): 418.

    Article  Google Scholar 

  • Zhao, Feng, Amr Elkelish, Jörg Durner, Christian Lindermayr, J. Barbro Winkler, Franziska Ruff, Heidrun Behrendt, Claudia Traidl-Hoffmann, Andreas Holzinger, Werner Kofler, et al. 2016. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Plant, Cell and Environment 39(1): 147–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lary, D.J. et al. (2022). Machine Learning, Big Data, and Spatial Tools: A Combination to Reveal Complex Facts That Impact Environmental Health. In: Faruque, F.S. (eds) Geospatial Technology for Human Well-Being and Health. Springer, Cham. https://doi.org/10.1007/978-3-030-71377-5_12

Download citation

Publish with us

Policies and ethics

Navigation