Natural Language Processing in Mental Health Research and Practice

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

  • 1197 Accesses

Abstract

Information relevant to mental health is commonly recorded as unstructured narrative text. This text may be part of a clinical record, a social media post, a diary, or a transcribed conversation between two or more people. Although the quantity and richness of this unstructured narrative text is vast, it is inaccessible to traditional computer systems which rely on structured data. Natural language processing (NLP) is a technology that solves the problem of making this information accessible to computer systems. NLP is a technology for converting unstructured narrative texts into a format that is more easily accessible to computerized systems. NLP is also a scientific field—the field concerned with develo** and applying methods for making unstructured narrative texts computable. NLP is a field in computer science that combines artificial intelligence, statistics, and linguistics to process unstructured text and make it more easily accessible by computerized systems. In this chapter, we provide an overview of NLP within the mental health domain. We discuss different data sources, including electronic health records and social media text, and describe how to collect, process, and analyze these texts for mental health research and practice. Finally, we provide an overview of applications, challenges, limitations, and ethical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://developer.twitter.com

  2. 2.

    http://www.reddit.com/dev/api

  3. 3.

    https://www.tumblr.com › docs › api

  4. 4.

    https://github.com/

  5. 5.

    https://code.google.com/archive/p/word2vec/

  6. 6.

    http://bio.nlplab.org/

  7. 7.

    https://www.ncbi.nlm.nih.gov/pubmed/

  8. 8.

    http://liwc.wpengine.com/

References

  1. Abbe A, Grouin C, Zweigenbaum P, Falissard B. Text mining applications in psychiatry: a systematic literature review. Int J Methods Psychiatr Res. 2016;25(2):86–100.

    Article  PubMed  Google Scholar 

  2. Calvo RA, Milne DN, Hussain MS, Christensen H. Natural language processing in mental health applications using non-clinical texts. Nat Lang Eng. 2017;23(5):649–85.

    Article  Google Scholar 

  3. Perera G, Broadbent M, Callard F, Chang CK, Downs J, Dutta R, et al. Cohort profile of the South London and Maudsley NHS Foundation Trust biomedical research Centre (SLaM BRC) case register: current status and recent enhancement of an electronic mental health record-derived data resource. BMJ Open. 2016;6(3):e008721.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;17(01):128–44.

    Article  Google Scholar 

  5. Filannino M, Stubbs A, Uzuner Ö. Symptom severity prediction from neuropsychiatric clinical records: overview of 2016 CEGS N-GRID shared tasks track 2. J Biomed Inform. 2017;75:S62–70.

    Article  Google Scholar 

  6. Walsh CG, Ribeiro JD, Franklin JC. Predicting risk of suicide attempts over time through machine learning. Clin Psychol Sci. 2017;5(3):457–69.

    Article  Google Scholar 

  7. Rumshisky A, Ghassemi M, Naumann T, Szolovits P, Castro V, McCoy T, et al. Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Transl Psychiatry. 2016;6(10):e921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Downs J, Velupillai S, George G, Holden R, Kikoler M, Dean H, et al. Detection of suicidality in adolescents with autism spectrum disorders: develo** a natural language processing approach for use in electronic health records. In: AMIA annual symposium proceedings. vol. 2017. American Medical Informatics Association, Bethesda; 2017. p. 641.

    Google Scholar 

  9. Anderson HD, Pace WD, Brandt E, Nielsen RD, Allen RR, Libby AM, et al. Monitoring suicidal patients in primary care using electronic health records. J Am Board Family Med. 2015;28(1):65–71.

    Article  Google Scholar 

  10. Gorrell G, Roberts A, Jackson R, Stewart R. Finding negative symptoms of schizophrenia in patient records. In: Proceedings of the Workshop on NLP for medicine and biology associated with RANLP 2013, pp 9–17

    Google Scholar 

  11. Jackson RG, Patel R, Jayatilleke N, Kolliakou A, Ball M, Gorrell G, et al. Natural language processing to extract symptoms of severe mental illness from clinical text: the clinical record interactive search comprehensive data extraction (CRIS-CODE) project. BMJ Open. 2017;7(1):e012012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fernandes AC, Cloete D, Broadbent MT, Hayes RD, Chang CK, Jackson RG, et al. Development and evaluation of a de-identification procedure for a case register sourced from mental health electronic records. BMC Med Inform Decis Mak. 2013;13(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jackson R, Patel R, Velupillai S, Gkotsis G, Hoyle D, Stewart R. Knowledge discovery for deep Phenoty** serious mental illness from electronic mental health record. F1000Research. 2018;7:210.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Perlis R, Iosifescu D, Castro V, Murphy S, Gainer V, Minnier J, et al. Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model. Psychol Med. 2012;42(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy SN, Mendis M, Hackett K, Kuttan R, Pan W, Phillips LC, et al. Architecture of the open-source clinical research chart from informatics for integrating biology and the bedside. In: AMIA annual symposium proceedings. vol. 2007. American Medical Informatics Association, Bethesda; 2007. p. 548.

    Google Scholar 

  16. Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH, et al. Predicting suicidal behavior from longitudinal electronic health records. Am J Psychiatr. 2016;174(2):154–62.

    Article  PubMed  Google Scholar 

  17. Adekkanattu P, Sholle ET, DeFerio J, Pathak J, Johnson SB, Campion Jr TR. Ascertaining depression severity by extracting patient health questionnaire-9 (PHQ-9) scores from clinical notes. In: AMIA annual symposium proceedings. vol. 2018. American Medical Informatics Association, Bethesda; 2018. p. 147.

    Google Scholar 

  18. U S Dept of Labor EBSA. The Health Insurance Portability and Accountability Act (HIPAA); 2004. http://purl.fdlp.gov/GPO/gpo10291.

  19. Stubbs A, Uzuner Ö. Annotating longitudinal clinical narratives for de-identification: the 2014 i2b2/UTHealth corpus. J Biomed Inform. 2015;58:S20–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stubbs A, Filannino M, Uzuner Ö. De-identification of psychiatric intake records: overview of 2016 CEGS N-GRID shared tasks track 1. J Biomed Inform. 2017;75:S4–S18.

    Article  Google Scholar 

  21. Tran T, Kavuluru R. Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. J Biomed Inform. 2017;75:S138–48.

    Article  Google Scholar 

  22. Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc. 2009;16(4):561–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Uzuner Ö, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc. 2008;15(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uzuner Ö, Stubbs A, Filannino M. A natural language processing challenge for clinical records: research domains criteria (RDoC) for psychiatry. J Biomed Inform. 2017;75:S1–3.

    Article  Google Scholar 

  25. Goodwin TR, Maldonado R, Harabagiu SM. Automatic recognition of symptom severity from psychiatric evaluation records. J Biomed Inform. 2017;75:S71–84.

    Article  Google Scholar 

  26. Rios A, Kavuluru R. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores. J Biomed Inform. 2017;75:S85–93.

    Article  Google Scholar 

  27. Posada JD, Barda AJ, Shi L, Xue D, Ruiz V, Kuan PH, et al. Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records. J Biomed Inform. 2017;75:S94–S104.

    Article  Google Scholar 

  28. Liu Y, Gu Y, Nguyen JC, Li H, Zhang J, Gao Y, et al. Symptom severity classification with gradient tree boosting. J Biomed Inform. 2017;75:S105–11.

    Article  Google Scholar 

  29. Scheurwegs E, Sushil M, Tulkens S, Daelemans W, Luyckx K. Counting trees in random forests: predicting symptom severity in psychiatric intake reports. J Biomed Inform. 2017;75:S112–9.

    Article  Google Scholar 

  30. Clark C, Wellner B, Davis R, Aberdeen J, Hirschman L. Automatic classification of RDoC positive valence severity with a neural network. J Biomed Inform. 2017;75:S120–8.

    Article  Google Scholar 

  31. Obar JA, Wildman SS. Social media definition and the governance challenge-an introduction to the special issue. Telecommun Policy. 2015;39(9):745–50.

    Article  Google Scholar 

  32. De Choudhury M, Kiciman E, Dredze M, Coppersmith G, Kumar M. Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems. New York: ACM; 2016. p. 2098–110.

    Chapter  Google Scholar 

  33. Gkotsis G, Oellrich A, Velupillai S, Liakata M, Hubbard TJ, Dobson RJ, et al. Characterisation of mental health conditions in social media using informed deep learning. Sci Rep. 2017;7:45141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaur M, Kursuncu U, Alambo A, Sheth A, Daniulaityte R, Thirunarayan K, et al. Let me tell you about your mental health!: Contextualized classification of reddit posts to dsm-5 for web-based intervention. In: Proceedings of the 27th ACM international conference on information and knowledge management. New York: ACM; 2018. p. 753–62.

    Chapter  Google Scholar 

  35. Shen JH, Rudzicz F. Detecting anxiety through reddit. In: Proceedings of the fourth workshop on computational linguistics and clinical psychology – from linguistic signal to clinical reality; 2017, pp 58–65

    Google Scholar 

  36. Gaur M, Alambo A, Sain JP, Kursuncu U, Thirunarayan K, Kavuluru R, et al. Knowledge-aware assessment of severity of suicide risk for early intervention. In: The world wide web conference. New York: ACM; 2019. p. 514–25.

    Chapter  Google Scholar 

  37. Alambo A, Gaur M, Lokala U, Kursuncu U, Thirunarayan K, Gyrard A, et al. Question answering for suicide risk assessment using reddit. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC). Newport Beach, CA: IEEE; 2019. p. 468–73.

    Chapter  Google Scholar 

  38. Kavuluru R, Ramos-Morales M, Holaday T, Williams AG, Haye L, Cerel J. Classification of helpful comments on online suicide watch forums. In: Proceedings of the 7th ACM international conference on bioinformatics, computational biology, and health informatics. New York: ACM; 2016. p. 32–40.

    Chapter  Google Scholar 

  39. Guntuku SC, Yaden DB, Kern ML, Ungar LH, Eichstaedt JC. Detecting depression and mental illness on social media: an integrative review. Curr Opin Behav Sci. 2017;18:43–9.

    Article  Google Scholar 

  40. Paul MJ, Dredze M. You are what you tweet: analyzing twitter for public health. In: Fifth international aaai conference on weblogs and social media; 2011

    Google Scholar 

  41. De Choudhury M, Gamon M, Counts S, Horvitz E. Predicting depression via social media. In: Seventh international AAAI conference on weblogs and social media; 2013

    Google Scholar 

  42. Coppersmith G, Dredze M, Harman C. Quantifying mental health signals in Twitter. In: Proceedings of the workshop on computational linguistics and clinical psychology: From linguistic signal to clinical reality; 2014, pp 51–60

    Google Scholar 

  43. Benton A, Mitchell M, Hovy D. Multi-task learning for mental health using social media text. ar**v preprint ar**v:171203538. 2017

    Google Scholar 

  44. Saha K, Sugar B, Torous J, Abrahao B, Kcman E, De Choudhury M. A social media study on the effects of psychiatric medication use. Proceedings of the International AAAI Conference on Web and Social Media. 2019;13:440–51.

    Article  Google Scholar 

  45. Yazdavar AH, Al-Olimat HS, Ebrahimi M, Bajaj G, Banerjee T, Thirunarayan K, et al. Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017. New York: ACM; 2017. p. 1191–8.

    Chapter  Google Scholar 

  46. Yazdavar AH, Mahdavinejad MS, Bajaj G, Romine W, Monadjemi A, Thirunarayan K, et al. Fusing visual, textual and connectivity clues for studying mental health. ar**v preprint ar**v:190206843. 2019

    Google Scholar 

  47. Schwartz HA, Eichstaedt J, Kern ML, Park G, Sap M, Stillwell D, et al. Towards assessing changes in degree of depression through facebook. In: Proceedings of the workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2014, pp 118–125

    Google Scholar 

  48. Homan CM, Lu N, Tu X, Lytle MC, Silenzio V. Social structure and depression in TrevorSpace. In: Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing. New York: ACM; 2014. p. 615–25.

    Google Scholar 

  49. Cavazos-Rehg PA, Krauss MJ, Sowles SJ, Connolly S, Rosas C, Bharadwaj M, et al. An analysis of depression, self-harm, and suicidal ideation content on Tumblr. Crisis. 2016

    Google Scholar 

  50. Strapparava C, Mihalcea R. Learning to identify emotions in text. In: Proceedings of the 2008 ACM symposium on Applied computing; 2008, pp 1556–1560

    Google Scholar 

  51. Nguyen T, Phung D, Dao B, Venkatesh S, Berk M. Affective and content analysis of online depression communities. IEEE Trans Affect Comput. 2014;5(3):217–26.

    Article  Google Scholar 

  52. Li A, Huang X, Hao B, O’Dea B, Christensen H, Zhu T. Attitudes towards suicide attempts broadcast on social media: an exploratory study of Chinese microblogs. PeerJ. 2015;3:e1209.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Masuda N, Kurahashi I, Onari H. Suicide ideation of individuals in online social networks. PloS One. 2013;8(4):e62262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Choudhury M, Counts S, Horvitz EJ, Hoff A. Characterizing and predicting postpartum depression from shared facebook data. In: Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing. New York: ACM; 2014. p. 626–38.

    Google Scholar 

  55. Coppersmith G, Dredze M, Harman C, Hollingshead K. From ADHD to SAD: Analyzing the language of mental health on Twitter through self-reported diagnoses. In: Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2015, pp 1–10

    Google Scholar 

  56. Mitchell M, Hollingshead K, Coppersmith G. Quantifying the language of schizophrenia in social media. In: Proceedings of the 2nd workshop on Computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2015, pp 11–20.

    Google Scholar 

  57. MacAvaney S, Desmet B, Cohan A, Soldaini L, Yates A, Zirikly A, et al. RSDD-Time: Temporal annotation of self-reported mental health diagnoses. ar**v preprint ar**v:180607916. 2018

    Google Scholar 

  58. Klein A, Sarker A, Rouhizadeh M, O’Connor K, Gonzalez G. Detecting personal medication intake in Twitter: an annotated corpus and baseline classification system. BioNLP. 2017;2017:136–42.

    Google Scholar 

  59. Culotta A. Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the first workshop on social media analytics. New York: ACM; 2010. p. 115–22.

    Chapter  Google Scholar 

  60. Paul MJ, Dredze M. A model for mining public health topics from twitter. Health. 2012;11(16–16):1.

    Google Scholar 

  61. Jamnik MR, Lane DJ. The use of Reddit as an inexpensive source for high-quality data. Pract Assess Res Eval. 2017;22:1–10.

    Google Scholar 

  62. De Choudhury M. Role of social media in tackling challenges in mental health. In: Proceedings of the 2nd international workshop on Socially-aware multimedia. ACM, New York; 2013. p. 49–52.

    Google Scholar 

  63. Althoff T, Clark K, Leskovec J. Large-scale analysis of counseling conversations: an application of natural language processing to mental health. Trans Assoc Comput Linguist. 2016;4:463–76.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maenner MJ, Yeargin-Allsopp M, Braun KVN, Christensen DL, Schieve LA. Development of a machine learning algorithm for the surveillance of autism spectrum disorder. PLoS One. 2016;11(12):e0168224.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pestian J, Nasrallah H, Matykiewicz P, Bennett A, Leenaars A. Suicide note classification using natural language processing: A content analysis. Biomed Infor Insights. 2010;3:BII–S4706.

    Article  Google Scholar 

  66. Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O, Wiebe J, et al. Sentiment analysis of suicide notes: a shared task. Biomed Infor Insights. 2012;5:BII–S9042.

    Article  Google Scholar 

  67. Thompson P, Bryan C, Poulin C. Predicting military and veteran suicide risk: Cultural aspects. In: Proceedings of the workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2014, pp 1–6

    Google Scholar 

  68. Ferrucci D, Lally A. UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat Lang Eng. 2004;10(3–4):327–48.

    Article  Google Scholar 

  69. Divita G, Carter ME, Tran LT, Redd D, Zeng QT, Duvall S, et al. v3NLP Framework: tools to build applications for extracting concepts from clinical text. eGEMs. 2016;4(3):1228.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations; 2014. pp 55–60

    Google Scholar 

  71. Toutanova K, Klein D, Manning CD, Singer Y. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American chapter of the association for computational linguistics on human language technology-volume 1. Association for computational Linguistics; 2003. pp 173–180.

    Google Scholar 

  72. Chen D, Manning C. A fast and accurate dependency parser using neural networks. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 740–750

    Google Scholar 

  73. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001;34(5):301–10.

    Article  CAS  PubMed  Google Scholar 

  74. Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems; 2013. pp 3111–3119

    Google Scholar 

  76. Pennington J, Socher R, Manning C. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 1532–1543

    Google Scholar 

  77. Pyysalo S, Filip G, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing

    Google Scholar 

  78. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. ar**v preprint ar**v:181004805. 2018

    Google Scholar 

  79. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep contextualized word representations. ar**v preprint ar**v:180205365. 2018

    Google Scholar 

  80. Rosenthal S, Nakov P, Kiritchenko S, Mohammad S, Ritter A, Stoyanov V. Semeval-2015 task 10: Sentiment analysis in twitter. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015); 2015, pp 451–463

    Google Scholar 

  81. Nakov P, Ritter A, Rosenthal S, Sebastiani F, Stoyanov V. SemEval-2016 task 4: Sentiment analysis in Twitter. In: Proceedings of the 10th international workshop on semantic evaluation (semeval-2016); 2016, pp 1–18

    Google Scholar 

  82. Rosenthal S, Farra N, Nakov P. SemEval-2017 task 4: Sentiment analysis in Twitter. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017); 2017. pp 502–518

    Google Scholar 

  83. Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. LREC. 2010;10:2200–4.

    Google Scholar 

  84. Nielsen FĂ…. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. ar**v preprint ar**v:11032903. 2011

    Google Scholar 

  85. Tausczik YR, Pennebaker JW. The psychological meaning of words: LIWC and computerized text analysis methods. J Lang Soc Psychol. 2010;29(1):24–54.

    Article  Google Scholar 

  86. Pennebaker JW, Boyd RL, Jordan K, Blackburn K. The development and psychometric properties of LIWC2015; 2015

    Google Scholar 

  87. Resnik P, Garron A, Resnik R. Using topic modeling to improve prediction of neuroticism and depression in college students. In: Proceedings of the 2013 conference on empirical methods in natural language processing; 2013, pp 1348–1353

    Google Scholar 

  88. Viani N, Yin L, Kam J, Alawi A, Bittar A, Dutta R, et al. Time expressions in mental health Records for Symptom Onset Extraction. In: Proceedings of the ninth international workshop on health text mining and information analysis; 2018, pp 183–192.

    Google Scholar 

  89. Kim Y Convolutional neural networks for sentence classification. ar**v preprint ar**v:14085882. 2014

    Google Scholar 

  90. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in neural information processing systems; 2017, pp 5998–6008

    Google Scholar 

  91. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.

    Google Scholar 

  92. Resnik P, Armstrong W, Claudino L, Nguyen T, Nguyen VA, Boyd-Graber J. Beyond LDA: exploring supervised topic modeling for depression-related language in Twitter. In: Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2015, pp 99–107.

    Google Scholar 

  93. Braithwaite SR, Giraud-Carrier C, West J, Barnes MD, Hanson CL. Validating machine learning algorithms for twitter data against established measures of suicidality. JMIR Mental Health 2016 May;3(2):e21. Available from: http://mental.jmir.org/2016/2/e21/.

  94. Haerian K, Salmasian H, Friedman C. Methods for identifying suicide or suicidal ideation in EHRs. In: AMIA annual symposium proceedings, vol. 2012. Chicago: American Medical Informatics Association; 2012. p. 1244.

    Google Scholar 

  95. Fernandes AC, Dutta R, Velupillai S, Sanyal J, Stewart R, Chandran D. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing. Sci Rep. 2018;8(1):7426.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bhat HS, Goldman-Mellor SJ. Predicting adolescent suicide attempts with neural networks. ar**v preprint ar**v:171110057. 2017;

    Google Scholar 

  97. Burnap P, Colombo W, Scourfield J. Machine classification and analysis of suicide-related communication on twitter. In: Proceedings of the 26th ACM conference on hypertext & social media. New York: ACM; 2015. p. 75–84.

    Chapter  Google Scholar 

  98. Cohan A, Young S, Yates A, Goharian N. Triaging content severity in online mental health forums. J Assoc Inf Sci Technol. 2017;68(11):2675–89.

    Article  Google Scholar 

  99. Zhou L, Baughman AW, Lei VJ, Lai KH, Navathe AS, Chang F, et al. Identifying patients with depression using free-text clinical documents. Stud Health Technol Inform. 2015;216:629–33.

    PubMed  Google Scholar 

  100. De Choudhury M, Counts S, Horvitz E. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th annual ACM web science conference. New York: ACM; 2013. p. 47–56.

    Chapter  Google Scholar 

  101. Coppersmith G, Dredze M, Harman C, Hollingshead K, Mitchell M. CLPsych 2015 shared task: depression and PTSD on Twitter. In: Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2015, pp 31–39

    Google Scholar 

  102. Preotiuc-Pietro D, Sap M, Schwartz HA, Ungar L. Mental illness detection at the world well-being project for the CLPsych 2015 shared task. In: Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2015, pp 40–45

    Google Scholar 

  103. Du J, Zhang Y, Luo J, Jia Y, Wei Q, Tao C, et al. Extracting psychiatric stressors for suicide from social media using deep learning. BMC Med Inform Decis Mak. 2018;18(2):43.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Leroy G, Gu Y, Pettygrove S, Galindo MK, Arora A, Kurzius-Spencer M. Automated extraction of diagnostic criteria from electronic health records for autism spectrum disorders: development, evaluation, and application. J Med Internet Res. 2018;20(11):e10497.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Patel R, Jayatilleke N, Broadbent M, Chang CK, Foskett N, Gorrell G, et al. Negative symptoms in schizophrenia: a study in a large clinical sample of patients using a novel automated method. BMJ Open. 2015;5(9):e007619.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Heslin M, Khondoker M, Shetty H, Pritchard M, Jones PB, Osborn D, et al. Inpatient use and area-level socio-environmental factors in people with psychosis. Soc Psychiatry Psychiatr Epidemiol. 2018;53(10):1133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Das-Munshi J, Ashworth M, Gaughran F, Hull S, Morgan C, Nazroo J, et al. Ethnicity and cardiovascular health inequalities in people with severe mental illnesses: protocol for the E-CHASM study. Soc Psychiatry Psychiatr Epidemiol. 2016;51(4):627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Deferio JJ, Levin TT, Cukor J, Banerjee S, Abdulrahman R, Sheth A, et al. Using electronic health records to characterize prescription patterns: focus on antidepressants in nonpsychiatric outpatient settings. JAMIA Open. 2018;1(2):233–45.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Milne DN, Pink G, Hachey B, Calvo RA. Clpsych 2016 shared task: triaging content in online peer-support forums. In: Proceedings of the third workshop on computational linguistics and clinical psychology; 2016. p. 118–127.

    Google Scholar 

  110. Kadra G, Stewart R, Shetty H, Jackson RG, Greenwood MA, Roberts A, et al. Extracting antipsychotic polypharmacy data from electronic health records: develo** and evaluating a novel process. BMC Psychiatry. 2015;15(1):166.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sohn S, Kocher JPA, Chute CG, Savova GK. Drug side effect extraction from clinical narratives of psychiatry and psychology patients. J Am Med Inform Assoc. 2011;18(Supplement_1):i144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lyalina S, Percha B, LePendu P, Iyer SV, Altman RB, Shah NH. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J Am Med Inform Assoc. 2013;20(e2):e297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zirikly A, Resnik P, Uzuner O, Hollingshead K. CLPsych 2019 shared task: predicting the degree of suicide risk in Reddit posts. In: Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology; 2019. p. 24–33.

    Google Scholar 

  114. Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32(Suppl_1):D267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, et al. DataMed–an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc. 2018;25(3):300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ohno-Machado L, Sansone SA, Alter G, Fore I, Grethe J, Xu H, et al. Finding useful data across multiple biomedical data repositories using DataMed. Nat Genet. 2017;49(6):816–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cameron D, Smith GA, Daniulaityte R, Sheth AP, Dave D, Chen L, et al. PREDOSE: a semantic web platform for drug abuse epidemiology using social media. J Biomed Inform. 2013;46(6):985–97.

    Article  PubMed  Google Scholar 

  118. Liu Q, Woo M, Zou X, Champaneria A, Lau C, Mubbashar MI, et al. Symptom-based patient stratification in mental illness using clinical notes. J Biomed Inform. 2019;98:103274.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Friedman C, Rubin J, Brown J, Buntin M, Corn M, Etheredge L, et al. Toward a science of learning systems: a research agenda for the high-functioning learning health system. J Am Med Inform Assoc. 2015;22(1):43–50.

    Article  PubMed  Google Scholar 

  120. Kaggal VC, Elayavilli RK, Mehrabi S, Pankratz JJ, Sohn S, Wang Y, et al. Toward a learning health-care system–knowledge delivery at the point of care empowered by big data and NLP. Biomed Inform Insights. 2016;8:S37977–BII.

    Article  Google Scholar 

  121. Barak A, Grohol JM. Current and future trends in internet-supported mental health interventions. J Technol Hum Serv. 2011;29(3):155–96.

    Article  Google Scholar 

  122. Ritterband LM, Gonder-Frederick LA, Cox DJ, Clifton AD, West RW, Borowitz SM. Internet interventions: in review, in use, and into the future. Prof Psychol Res Pract. 2003;34(5):527.

    Article  Google Scholar 

  123. Spek V, Cuijpers P, Nyklcek I, Riper H, Keyzer J, Pop V. Internet-based cognitive behaviour therapy for symptoms of depression and anxiety: a meta-analysis. Psychol Med. 2007;37(3):319–28.

    Article  PubMed  Google Scholar 

  124. Donker T, Griffiths KM, Cuijpers P, Christensen H. Psychoeducation for depression, anxiety and psychological distress: a meta-analysis. BMC Med. 2009;7(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Neve M, Morgan PJ, Jones P, Collins C. Effectiveness of web-based interventions in achieving weight loss and weight loss maintenance in overweight and obese adults: a systematic review with meta-analysis. Obes Rev. 2010;11(4):306–21.

    Article  CAS  PubMed  Google Scholar 

  126. Bewick BM, Trusler K, Barkham M, Hill AJ, Cahill J, Mulhern B. The effectiveness of web-based interventions designed to decrease alcohol consumption – a systematic review. Prev Med. 2008;47(1):17–26.

    Google Scholar 

  127. Myung SK, McDonnell DD, Kazinets G, Seo HG, Moskowitz JM. Effects of web-and computer-based smoking cessation programs: meta-analysis of randomized controlled trials. Arch Intern Med. 2009;169(10):929–37.

    Article  PubMed  Google Scholar 

  128. Aguilera A, Muñoz RF. Text messaging as an adjunct to CBT in low-income populations: a usability and feasibility pilot study. Prof Psychol Res Pract. 2011;42(6):472.

    Article  Google Scholar 

  129. Bauer S, Percevic R, Okon E, Meermann R, Kordy H. Use of text messaging in the aftercare of patients with bulimia nervosa. Eur Eat Disord Rev: The Professional Journal of the Eating Disorders Association. 2003;11(3):279–90.

    Article  Google Scholar 

  130. Fjeldsoe BS, Marshall AL, Miller YD. Behavior change interventions delivered by mobile telephone short-message service. Am J Prev Med. 2009;36(2):165–73.

    Article  PubMed  Google Scholar 

  131. Grohol JM. Online counseling: a historical perspective; 2004.

    Google Scholar 

  132. Griffiths KM, Calear AL, Banfield M. Systematic review on internet support groups (ISGs) and depression (1): do ISGs reduce depressive symptoms? J Med Internet Res. 2009;11(3):e40.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ernala SK, Birnbaum ML, Candan KA, Rizvi AF, Sterling WA, Kane JM, et al. Methodological gaps in predicting mental health states from social media: Triangulating diagnostic signals. In: Proceedings of the 2019 CHI conference on human factors in computing systems, vol. 2019. New York: ACM. p. 134.

    Google Scholar 

  134. Chancellor S, Birnbaum ML, Caine ED, Silenzio V, De Choudhury M. A taxonomy of ethical tensions in inferring mental health states from social media. In: Proceedings of the conference on fairness, accountability, and transparency. New York: ACM; 2019. p. 79–88.

    Chapter  Google Scholar 

  135. Benton A, Coppersmith G, Dredze M. Ethical research protocols for social media health research. In: Proceedings of the first ACL workshop on ethics in natural language processing; 2017. p. 94–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henry, S., Yetisgen, M., Uzuner, O. (2021). Natural Language Processing in Mental Health Research and Practice. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation