How Do Deep Convolutional SDM Trained on Satellite Images Unravel Vegetation Ecology?

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Species distribution models (SDM) assess and predict how species spatial distributions depend on the environment, due to species ecological preferences. These models are used in many different scenarios such as conservation plans or monitoring of invasive species. The choice of a model and of environmental data have strong impact on the model’s ability to capture important ecological information. Specifically, state-of-the-art models generally rely on local, punctual environmental information, and do not take into account environmental variation in surrounding landscape. Here we use a convolutional neural network model to analyze and predict species distributions depending on high resolution data including remote sensing images, land cover and altitude. We show that the model unravel the functional response of vegetation to both local and large-scale environmental variation. To demonstrate the ecological significance of the results, we propose an original statistical analysis of t-SNE nonlinear dimension reduction. We illustrate and test the traits-species-environment relationships learned by the model and expressed in t-SNE dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    National Agriculture Image Program, https://www.fsa.usda.gov.

  2. 2.

    https://geoservices.ign.fr.

  3. 3.

    http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/.

  4. 4.

    https://lpdaac.usgs.gov/products/srtmgl1v003/.

  5. 5.

    Test occurrences are contained in \(5 \times 5\) km quadrats with no train occurrences and represent 2.5% of the overall set.

References

  1. Antoine, G., Wilfried, T.: Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005). https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  2. Baran, P., Lek, S., Delacoste, M., Belaud, A.: Stochastic models that predict trout population density or biomass on a mesohabitat scale. Hydrobiologia 337(1), 1–9 (1996). https://doi.org/10.1007/BF00028502

    Article  Google Scholar 

  3. Bartelheimer, M., Poschlod, P.: Functional characterizations of Ellenberg indicator values-a review on ecophysiological determinants. Funct. Ecol. 30(4), 506–516 (2016)

    Article  Google Scholar 

  4. Benkendorf, D.J., Hawkins, C.P.: Effects of sample size and network depth on a deep learning approach to species distribution modeling. Ecol. Inform. 60, 101137 (2020)

    Article  Google Scholar 

  5. Botella, C., Joly, A., Bonnet, P., Monestiez, P., Munoz, F.: A deep learning approach to species distribution modelling. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. MSA, pp. 169–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_10

    Chapter  Google Scholar 

  6. Chen, D., Xue, Y., Chen, S., Fink, D., Gomes, C.P.: Deep multi-species embedding. CoRR abs/1609.09353 (2016). http://arxiv.org/abs/1609.09353

  7. Christin, S., Hervet, É., Lecomte, N.: Applications for deep learning in ecology. Methods Ecol. Evol. 10(10), 1632–1644 (2019)

    Article  Google Scholar 

  8. Cole, E., et al.: The GeoLifeCLEF 2020 dataset. ar**v preprint ar**v:2004.04192 (2020)

  9. Cutler, D.R., et al.: Random forests for classification in ecology. Ecology 88(11), 2783–2792 (2007). https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  10. De’ath, G.: Boosted trees for ecological modeling and prediction. Ecology 88(1), 243–251 (2007). https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

    Article  Google Scholar 

  11. Deneu, B., Servajean, M., Joly, A.: Participation of LIRMM/Inria to the geo-lifeclef 2020 challenge. CLEF working notes (2020)

    Google Scholar 

  12. Deneu, B., Joly, A., Bonnet, P., Servajean, M., Munoz, F.: Supplementary materials: How do deep convolutional SDM trained on satellite images unravel vegetation ecology? https://gitlab.inria.fr/bdeneu/supplementary-materials-maes2020-paper-19

  13. Deneu, B., Servajean, M., Botella, C., Joly, A.: Location-based species recommendation using co-occurrences and environment- GeoLifeCLEF 2018 challenge. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  14. Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Article  Google Scholar 

  15. Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. J. Anim. Ecol. 77(4), 802–813 (2008). https://doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  16. Ellenberg, H.H.: Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  17. Guisan, A., Zimmermann, N.E.: Predictive habitat distribution models in ecology. Ecol. Model. 135(2), 147–186 (2000). https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  18. Hengl, T., et al.: SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2), e0169748 (2017)

    Article  Google Scholar 

  19. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25(15), 1965–1978 (2005)

    Article  Google Scholar 

  20. Homer, C., et al.: Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information. Photogram. Eng. Remote Sens. 81(5), 345–354 (2015)

    Google Scholar 

  21. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  22. Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., Aulagnier, S.: Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 90(1), 39–52 (1996). https://doi.org/10.1016/0304-3800(95)00142-5

    Article  Google Scholar 

  23. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  24. Miller, J.E., Damschen, E.I., Ives, A.R.: Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10(3), 415–425 (2019)

    Google Scholar 

  25. Peterson, A.T.: Ecological Niches and Geographic Distributions. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  26. Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006)

    Article  Google Scholar 

  27. Phillips, S.J., Dudík, M.: Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008). https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  28. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  29. Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J., Kattge, J.: The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111(38), 13690–13696 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This project has received funding from the French National Research Agency under the Investments for the Future Program, referred as ANR-16-CONV-0004 and from the European Union’s Horizon 2020 research and innovation program under grant agreement No 863463 (Cos4Cloud project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Deneu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deneu, B., Joly, A., Bonnet, P., Servajean, M., Munoz, F. (2021). How Do Deep Convolutional SDM Trained on Satellite Images Unravel Vegetation Ecology?. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation