Supercritical Fluid Extraction (SFE), Solid-Phase Micro Extraction (SPME), and Stir Bar Sorption Extraction (SBSE) Techniques

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Supercritical fluid extraction (SFE) is a sample preparation procedure according to the physicochemical characteristics of the analytes in a solid/liquid mixture. SFE technique is performed using different supercritical fluids (SFs) for the liquid/solid matrix to extract samples based on their interactions, including adsorption, hydrogen bonding, polar, and nonpolar interactions. SFE is routinely used to analyze various types of samples, including food components and contaminants. SFE is a rapid, no solvent consumption, and cheap technique compare to the other traditional extraction techniques. Solid-phase microextraction (SPME) can be used to prevent these common drawbacks from solid-phase extraction (SPE). SPME is a solvent-free microextraction technique, and it is a low-cost, highly sensitive, low detection limit and can be used for different types of analytes. Analytes can be extracted by headspace (HS), direct immersion (DI), or in tube method depending on the sample types. SPME technique can be used to detect quantitative analysis of food components and contaminates. Different SPME conditions are used for analysis, depending on the sample types. An open capillary tube is used in the SPME device, and SPME can be coupled with HPLC or LC/MS. Stir bar sorption extraction (SBSE) is another extraction technique that is similar to the SPME. SBSE is used for volatile or semi-volatile organic compounds in aqueous environmental samples. The stir bar is placed in the sample for 13–120 min. to perform the stir bar sorption extraction (SBSE). Then, the stir bar is set in a glass thermal desorption tube to be thermally desorbed or analyzed in a thermal or liquid desorption unit. In this chapter, the principle, application, and advancement of the extraction are discussed in relation to the analysis of food components and contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Font, G., Manes, J., Molto, J. C., & Pico, Y. (1993). Solid-phase extraction in multi-residue pesticide analysis of water. Journal of Chromatography A, 642, 135.

    Article  CAS  Google Scholar 

  2. Sabik, H., Jeannot, R., & Rondeau, B. (2000). Multiresidue methods using solid phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground water. Journal of Chromatography A, 885, 217.

    Article  CAS  Google Scholar 

  3. Grigoriadou, D., Androulaki, A., Psomiadou, E., & Tsimidou, M. Z. (2007). Solid phase extraction in the analysis of squalene and tocopherols in olive oil. Food Chemistry, 105, 675–680.

    Article  CAS  Google Scholar 

  4. Boskou, D. (Ed.). (2006). Olive oil, chemistry and technology (pp. 41–72). Champaign, IL: AOCS Press.

    Google Scholar 

  5. Soares, M. E., Carvalho, M., Carmo, H., Remião, F., Carvalho, F., & Batos, M. L. (2004). Simultaneous determination of amphetamine derivatives in human urine after SPE extraction and HPLC‐UV analysis. Biomedical Chromatography, 18, 125–131.

    Article  CAS  Google Scholar 

  6. Basa’ar, O., Fatema, S., Mohsin, M., & Farooqui, M. (2017). Evaluation of phytochemical and pharmacological properties of Cichorium intybus (L) based on supercritical fluid extract. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8, 1857–1866.

    Google Scholar 

  7. Herreroa, M., Mendiolaa, J. A., Cifuentes, A., & Ibánez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 2495–2511.

    Google Scholar 

  8. Kima, H., Cho, Y., Leea, B. S., & Choi, I. S. (2019). In-situ derivatization and headspace solid-phase microextraction for gas chromatography-mass spectrometry analysis of alkyl methyl phosphonic acids following solid-phase extraction using thin film. Journal of Chromatography A, 23, 17–24.

    Article  Google Scholar 

  9. Ridgwaya, K., Lalljiea, S. P. D., & Smith, R. M. (2010). An alternative method for analysis of food taints using stir bar sorptive extraction. Analytica Chimica Acta, 677, 29–36.

    Article  Google Scholar 

  10. Ochiai, N., Sasamoto, K., David, F., & Sandra, P. (2016). Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine. Journal of Chromatography A, 1455, 45–46.

    Article  CAS  Google Scholar 

  11. Ochiai, N., Sasamoto, K., David, F., & Sandra, P. (2018). Recent developments of stir bar extraction for food applications: Extension to polar solutes. Journal of Agricultural and Food Chemistry, 66(28), 7249–7255.

    Article  CAS  Google Scholar 

  12. Buszewski, B., & Szultka, M. (2012). Past, present, future of solid phase extraction: A review. Critical Reviews in Analytical Chemistry, 42, 198–213.

    Article  CAS  Google Scholar 

  13. Spietelun, A., Marcinkowski, Ł., de la Guardia, M., & Namiésnik, J. (2014). Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta, 119, 34–45.

    Article  CAS  Google Scholar 

  14. Balasubramanian, S., & Panigrahi, S. (2011). Solid-phase microextraction (SPME) techniques for quality characterization of food products: A review. Food and Bioprocess Technology, 4, 1–26.

    Article  CAS  Google Scholar 

  15. Arthur, C. L., Killam, L., Buchholz, K. D., Potter, D., Chai, M., Zhang, Z., & Pawliszyn, J. (1992). Solid-phase microextraction: An attractive alternative. Environmental Laboratory, 11, 10–15.

    Google Scholar 

  16. Zhang, Z., & Pawliszyn, J. (1993). Headspace solid phase microextraction. Analytical Chemistry, 65, 1843–1852.

    Article  CAS  Google Scholar 

  17. Zhang, Z., Yang, M. J., & Pawliszyn, J. (1994). Solid phase microextraction: A new solvent-free alternative for sample preparation. Analytical Chemistry, 66, 844A–853A.

    Article  CAS  Google Scholar 

  18. Eisert, R., & Levsen, K. J. (1995). Determination of pesticides in aqueous samples by solid-phase microextraction in-line coupled to gas chromatography-mass spectrometry. The Journal of the American Society for Mass Spectrometry, 6, 1119–1130.

    Article  CAS  Google Scholar 

  19. Zhang, Z., & Pawliszyn, J. (1996). Sampling volatile organic compounds using a modified solid phase microextraction device. Journal of High Resolution Chromatography, 19, 155–160.

    Article  CAS  Google Scholar 

  20. Arthur, C. L., & Pawliszyn, J. (1990). Solid-phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62, 2145–2148.

    Article  CAS  Google Scholar 

  21. Webster, G. R. B., Sarna, L. P., & Graham, K. N. (1996). Solid phase microextraction. Technology Aquatic Toxicology, 45.

    Google Scholar 

  22. Kataoka, H. (2005). Recent advances in solid-phase microextraction and related techniques for pharmaceutical and biomedical analysis. Current Pharmaceutical Analysis, 1, 65–84.

    Article  CAS  Google Scholar 

  23. Pragst, F. (2007). Application of solid-phase microextraction in analytical toxicology. Analytical and Bioanalytical Chemistry, 388, 1393–1414.

    Article  CAS  Google Scholar 

  24. Arthur, C. L., Killam, L. M., Buchholz, K. D., Pawliszyn, J., & Berg, J. R. (1992). Automation and optimization of solid-phase microextraction. Analytical Chemistry, 64, 1960–1966.

    Article  CAS  Google Scholar 

  25. Vuckovic, D., Cudjoe, E., Hein, D., & Pawliszyn, J. (2008). Automation of solid-phase microextraction in high-throughput format and application to drug analysis. Analytical Chemistry, 80, 6870–6880.

    Article  CAS  Google Scholar 

  26. Buchholz, K. D., & Pawliszyn, J. (1994). Optimization of solid-phase microextraction conditions for determination of phenols. Analytical Chemistry, 66, 160–167.

    Article  CAS  Google Scholar 

  27. Li, J., Wang, Y.-B., Li, K.-Y., Cao, Y.-Q., Wu, S., & Wu, L. (2015). Advances in different configurations of solid-phase microextraction and their applications in food and environmental analysis. TrAC Trends in Analytical Chemistry, 72, 141–152.

    Article  CAS  Google Scholar 

  28. Nogueira, J. M. F. (2012). Novel sorption-based methodologies for static microextraction analysis: A review on SBSE and related techniques. Analytica Chimica Acta, 757, 1–10.

    Article  CAS  Google Scholar 

  29. Taoa, L., **aoxuec, Y., Ganga, Z., **ga, A., Tonga, C., & Gongyinga, W. (2020). Stir bar sorptive extraction and automatic two-stage thermal desorption-gas chromatography-mass spectrometry for trace analysis of the byproducts from diphenyl carbonate synthesis. Microchemical Journal, 153, 104341.

    Article  Google Scholar 

  30. Ouyang, G., & Pawliszyn, J. (2006). SPME environmental analysis. Analytical and Bioanalytical Chemistry, 386, 1059–1073.

    Article  CAS  Google Scholar 

  31. Song, J., Gardner, B. D., Holland, J. F., & Beaudry, R. M. (1997). Rapid analysis of volatile flavor compounds in apple fruit using SPME and GC/time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry, 45(5), 1801–1807.

    Article  CAS  Google Scholar 

  32. Buttery, R. G., Ling, L. C., & Guadagni, D. G. (1969). Volatilities of aldehydes, ketones, and esters in dilute water solution. Journal of Agricultural and Food Chemistry, 17, 385–389.

    Article  CAS  Google Scholar 

  33. Ouyang, G., & Pawliszyn, J. (2006). Recent developments in SPME for on-site analysis and monitoring. TrAC Trends in Analytical Chemistry, 25, 692–703.

    Article  CAS  Google Scholar 

  34. Bundschuh, E., Tylla, M., Baumann, G., & Gierschner, K. (1986). Gewinnung von natuerlichen Aromen aus Reststoffen der Lebensmittelproduktion mit Hilfe der CO2-Hochdruckextraktion. Lebensmittel-Wissenschaft + Technologie, 19, 493–496.

    CAS  Google Scholar 

  35. Żwir-Ferenc, A., & Biziuk Solid, M. (2006). Phase extraction technique – trends, opportunities and applications. Polish Journal of Environmental Studies, 15, 677–690.

    Google Scholar 

  36. Ferguson, K. C., Luo, Y., Rusyn, I., & Chu, W. A. (2019). Comparative analysis of rapid equilibrium dialysis (red) and solid phase micro-extraction (SPME) methods for in vitro-in vivo extrapolation of environmental chemicals. Toxicology in Vitro, 60, 245–251.

    Article  CAS  Google Scholar 

  37. Rawa-Adkonis, M., Wolska, L., & Namiesnik, J. (2003). Modern techniques of extraction of organic from environmental matrices. Critical Reviews in Analytical Chemistry, 33, 199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kader, M.S., Rahman, M.R.T. (2021). Supercritical Fluid Extraction (SFE), Solid-Phase Micro Extraction (SPME), and Stir Bar Sorption Extraction (SBSE) Techniques. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_10

Download citation

Publish with us

Policies and ethics

Navigation