Metal Oxides for Perovskite Solar Cells

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

The photovoltaic (PV) industry is attracting a lot of attention from researchers and industry alike. The conventional sources of energy pose a threat to the environment and are depleting at a rapid pace. Sooner or later, these sources need to be replaced with dependable and cleaner sources. The quest to develop solar cells with high efficiency and low cost is afoot. The first-generation solar cells achieved high efficiency but at a high manufacturing cost. The -generation solar cells had phenomenal success in balancing performance and cost but employed toxic materials. Third-generation solar cells such as perovskite solar cells have not only achieved high efficiency but have also overcome the shortcomings of previous generations. Perovskite solar cells (PSCs) consist of light-absorbing organic metal halides sandwiched between charge transport layers. The function of transport layers is to separate and transport the charges effectively. Metal oxides, due to their high chemical stability, easy processability and low cost, are most suitable as transport layers. Depending upon nature and band positions, the metal oxides can be used either as an electron or as a hole transport layer. Transport layers have a profound effect not only on the performance of the cell but also on the overall stability. In this chapter, we focus on the role of metal oxides in the fabrication and performance of PSCs. The different requirements and parameters essential for a metal oxide have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CZTS:

Copper-zinc-tin sulphide

DFT:

Density functional theory

ETL:

Electron transport layer

FAI:

Formamidinium iodide

HTL:

Hole transport layer

J sc :

Short-circuit current

MAI:

Methyl ammonium iodide

OPV:

Organic photovoltaics

PCE:

Power conversion efficiency

PSCs:

Perovskite solar cells

PV:

Photovoltaics

V oc :

Open-circuit voltage

References

  1. Energy Consumption by Source, World (n.d.). https://ourworldindata.org/grapher/energy-consumption-by-source-and-region. Accessed 12 Sept 2020

  2. Solar Energy Basics | NREL (n.d.). https://www.nrel.gov/research/re-solar.html. Accessed 12 Sept 2020

  3. Sundaram S, Benson D, Mallick TK (2016) Overview of the PV industry and different technologies. In: Solar photovoltaic technology production. https://doi.org/10.1016/b978-0-12-802953-4.00002-0

    Chapter  Google Scholar 

  4. Rao CNR (2003) Perovskites. In: Meyers RA (ed) Encyclopedia of physical science and technology, 3rd edn. Academic Press, New York, pp 707–714. https://doi.org/10.1016/B0-12-227410-5/00554-8

    Chapter  Google Scholar 

  5. Ishihara T (2017) Inorganic perovskite oxides. In: Springer handbooks. Springer, Berlin, p 1. https://doi.org/10.1007/978-3-319-48933-9_59

    Chapter  Google Scholar 

  6. Huang H, Bodnarchuk MI, Kershaw SV, Kovalenko MV, Rogach AL (2017) Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett 2(9):2071–2083. https://doi.org/10.1021/acsenergylett.7b00547

    Article  CAS  Google Scholar 

  7. Mitzi DB, Chondroudis K, Kagan CR (2001) Organic-inorganic electronics. IBM J Res Dev 45(1):29–45. https://doi.org/10.1147/rd.451.0029

    Article  CAS  Google Scholar 

  8. Mitzi DB (2001) Templating and structural engineering in organic-inorganic perovskites. J Chem Soc Dalton Trans 1:1–12. https://doi.org/10.1039/b007070j

    Article  CAS  Google Scholar 

  9. Mitzi DB (2001) Thin-film deposition of organic-inorganic hybrid materials. Chem Mater 13(10):3283–3298. https://doi.org/10.1021/cm0101677

    Article  CAS  Google Scholar 

  10. Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM (1995) Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets. Science 267:1473. https://doi.org/10.1126/science.267.5203.1473

    Article  CAS  Google Scholar 

  11. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  12. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  13. Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N (2003) Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH 3PbI3. Solid State Commun 127(9–10):619–623. https://doi.org/10.1016/S0038-1098(03)00566-0

    Article  CAS  Google Scholar 

  14. Heo JH, Song DH, Patil BR, Im SH (2015) Recent progress of innovative perovskite hybrid solar cells. Isr J Chem 55:966–977. https://doi.org/10.1002/ijch.201500002

    Article  CAS  Google Scholar 

  15. Chen Q, De Marco N, Yang Y, Bin Song T, Chen CC, Zhao H, Hong Z, Zhou H, Yang Y (2015) Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3):355–396. https://doi.org/10.1016/j.nantod.2015.04.009

    Article  CAS  Google Scholar 

  16. Wendorff J (2004) Book review: broadband dielectric spectroscopy. In: Kremer F, Schönhals A (eds) Advanced materials. Springer, Berlin. https://doi.org/10.1002/adma.200490067

    Chapter  Google Scholar 

  17. Koster LJA, Shaheen SE, Hummelen JC (2012) Pathways to a new efficiency regime for organic solar cells. Adv Energy Mater 2(10):1246. https://doi.org/10.1002/aenm.201200103

    Article  CAS  Google Scholar 

  18. Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR (2011) Thermodynamic efficiency limit of excitonic solar cells. Phys Rev B - Condens Matter Mater Phys 83:195326. https://doi.org/10.1103/PhysRevB.83.195326

    Article  CAS  Google Scholar 

  19. Mauck CM, Tisdale WA (2019) Excitons in 2D organic–inorganic halide perovskites. Trends Chem 1:380–393. https://doi.org/10.1016/j.trechm.2019.04.003

    Article  CAS  Google Scholar 

  20. Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK, Grätzel M, Il Seok S (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):486–491. https://doi.org/10.1038/nphoton.2013.80

    Article  CAS  Google Scholar 

  21. Lee AY, Park DY, Jeong MS (2018) Correlational study of halogen tuning effect in hybrid perovskite single crystals with Raman scattering, X-ray diffraction, and absorption spectroscopy. J Alloys Compd 738:239–245. https://doi.org/10.1016/j.jallcom.2017.12.149

    Article  CAS  Google Scholar 

  22. Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H, Yang B (2017) CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 11(2):2239–2247. https://doi.org/10.1021/acsnano.6b08747

    Article  CAS  Google Scholar 

  23. Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG (2014) Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136:8094–8099. https://doi.org/10.1021/ja5033259

    Article  CAS  Google Scholar 

  24. Abdelhady AL, Saidaminov MI, Murali B, Adinolfi V, Voznyy O, Katsiev K, Alarousu E, Comin R, Dursun I, Sinatra L, Sargent EH, Mohammed OF, Bakr OM (2016) Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J Phys Chem Lett 7(2):295–301. https://doi.org/10.1021/acs.jpclett.5b02681

    Article  CAS  Google Scholar 

  25. Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11(1):10–25. https://doi.org/10.1002/smll.201402767

    Article  CAS  Google Scholar 

  26. Geng W, Zhang L, Zhang YN, Lau WM, Liu LM (2014) First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C 118(34):19565–19571. https://doi.org/10.1021/jp504951h

    Article  CAS  Google Scholar 

  27. Umebayashi T, Asai K, Umebayashi T, Asai K, Kondo T, Kondo T, Nakao A (2003) Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B Condens Matter Mater Phys 67:155405. https://doi.org/10.1103/PhysRevB.67.155405

    Article  CAS  Google Scholar 

  28. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52(15):9019–9038. https://doi.org/10.1021/ic401215x

    Article  CAS  Google Scholar 

  29. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093. https://doi.org/10.1039/c1nr10867k

    Article  CAS  Google Scholar 

  30. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):591. https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  31. Noh JH, Jeon NJ, Choi YC, Nazeeruddin MK, Grätzel M, Il Seok S (2013) Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/co-complex as hole-transporting material. J Mater Chem A 1:11842–11847. https://doi.org/10.1039/c3ta12681a

    Article  CAS  Google Scholar 

  32. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  33. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Il Seok S (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903. https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  34. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Il Seok S (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480. https://doi.org/10.1038/nature14133

    Article  CAS  Google Scholar 

  35. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Il Seok S (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237. https://doi.org/10.1126/science.aaa9272

    Article  CAS  Google Scholar 

  36. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194):295–298. https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  37. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398. https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  38. Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8(2):133–138. https://doi.org/10.1038/nphoton.2013.342

    Article  CAS  Google Scholar 

  39. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. https://doi.org/10.1126/science.1254050

    Article  CAS  Google Scholar 

  40. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:2761. https://doi.org/10.1038/ncomms3761

    Article  CAS  Google Scholar 

  41. Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ (2014) Perovskite solar cells employing organic charge-transport layers. Nat Photonics 8(2):128–132. https://doi.org/10.1038/nphoton.2013.341

    Article  CAS  Google Scholar 

  42. Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC (2013) CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 25(27):3727–3732. https://doi.org/10.1002/adma.201301327

    Article  CAS  Google Scholar 

  43. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221):522–525. https://doi.org/10.1126/science.aaa0472

    Article  CAS  Google Scholar 

  44. Heo JH, Han HJ, Kim D, Ahn TK, Im SH (2015) Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energ Environ Sci 8(5):1602–1608. https://doi.org/10.1039/c5ee00120j

    Article  CAS  Google Scholar 

  45. Ball JM, Lee MM, Hey A, Snaith HJ (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energ Environ Sci 6:1739–1743. https://doi.org/10.1039/c3ee40810h

    Article  CAS  Google Scholar 

  46. Bi D, Moon SJ, Häggman L, Boschloo G, Yang L, Johansson EMJ, Nazeeruddin MK, Grätzel M, Hagfeldt A (2013) Using a two-step deposition technique to prepare perovskite (CH 3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv 3:18762. https://doi.org/10.1039/c3ra43228a

    Article  CAS  Google Scholar 

  47. Ramirez D, Schutt K, Montoya JF, Mesa S, Lim J, Snaith HJ, Jaramillo F (2018) Meso-superstructured perovskite solar cells: revealing the role of the mesoporous layer. J Phys Chem C 122(37):21239–21247. https://doi.org/10.1021/acs.jpcc.8b07124

    Article  CAS  Google Scholar 

  48. Shin SS, Lee SJ, Seok SI (2019) Exploring wide bandgap metal oxides for perovskite solar cells. APL Mater 7:022401. https://doi.org/10.1063/1.5055607

    Article  CAS  Google Scholar 

  49. Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energ Environ Sci 6(11):3249–3253. https://doi.org/10.1039/c3ee42282h

    Article  CAS  Google Scholar 

  50. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  51. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824. https://doi.org/10.1002/adma.200502696

    Article  CAS  Google Scholar 

  52. Huang CY, Hsu YC, Chen JG, Suryanarayanan V, Lee KM, Ho KC (2006) The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Sol Energy Mater Sol Cells 90(15):2391–2397. https://doi.org/10.1016/j.solmat.2006.03.012

    Article  CAS  Google Scholar 

  53. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett 14(5):2591–2596. https://doi.org/10.1021/nl500399m

    Article  CAS  Google Scholar 

  54. Kim BJ, Kim DH, Lee YY, Shin HW, Han GS, Hong JS, Mahmood K, Ahn TK, Joo YC, Hong KS, Park NG, Lee S, Jung HS (2015) Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energ Environ Sci 8(3):916–921. https://doi.org/10.1039/c4ee02441a

    Article  CAS  Google Scholar 

  55. Shin SS, Lee SJ, Il Seok S (2019) Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv Funct Mater 29(47):1900455. https://doi.org/10.1002/adfm.201900455

    Article  CAS  Google Scholar 

  56. Jeong I, Park YH, Bae S, Park M, Jeong H, Lee P, Ko MJ (2017) Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells. ACS Appl Mater Interfaces 9(42):36865–36874. https://doi.org/10.1021/acsami.7b11901

    Article  CAS  Google Scholar 

  57. Chiu HC, Yeh CS (2007) Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J Phys Chem C 111(20):7256–7259. https://doi.org/10.1021/jp0688355

    Article  CAS  Google Scholar 

  58. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  59. Gu F, Wang SF, Song CF, Lü MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Synthesis and luminescence properties of SnO2 nanoparticles. Chem Phys Lett 372(3–4):451–454. https://doi.org/10.1016/S0009-2614(03)00440-8

    Article  CAS  Google Scholar 

  60. Dai ZR, Gole JL, Stout JD, Wang ZL (2002) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B 106:1274–1279. https://doi.org/10.1021/jp013214r

    Article  CAS  Google Scholar 

  61. Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J Solid State Chem 177:1425. https://doi.org/10.1016/j.jssc.2003.11.024

    Article  CAS  Google Scholar 

  62. Ke W, Fang G, Liu Q, **ong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137:6730–6733. https://doi.org/10.1021/jacs.5b01994

    Article  CAS  Google Scholar 

  63. Anaraki EH, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Grätzel M, Hagfeldt A, Correa-Baena JP (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energ Environ Sci 9:3128–3134. https://doi.org/10.1039/c6ee02390h

    Article  CAS  Google Scholar 

  64. Barbé J, Tietze ML, Neophytou M, Murali B, Alarousu E, El Labban A, Abulikemu M, Yue W, Mohammed OF, McCulloch I, Amassian A, Del Gobbo S (2017) Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Appl Mater Interfaces 12(13):15194–15201. https://doi.org/10.1021/acsami.6b13675

    Article  CAS  Google Scholar 

  65. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J (2017) Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3-based perovskite solar cells. Nat Energy 2(1):16177. https://doi.org/10.1038/nenergy.2016.177

    Article  CAS  Google Scholar 

  66. Santos L, Neto JP, Crespo A, Baião P, Barquinha P, Pereira L, Martins R, Fortunato E (2015) Electrodeposition of WO3 nanoparticles for sensing applications. In: Electroplating of nanostructures, pp 27–47. https://doi.org/10.5772/61216

    Chapter  Google Scholar 

  67. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555. https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  68. Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC (2006) Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv Mater 18(6):763–766. https://doi.org/10.1002/adma.200501953

    Article  CAS  Google Scholar 

  69. Zheng H, Tachibana Y, Kalantar-Zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26(24):19148–19152. https://doi.org/10.1021/la103692y

    Article  CAS  Google Scholar 

  70. Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403. https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  71. Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. J Mater Chem A 3:9051–9057. https://doi.org/10.1039/c4ta04883k

    Article  CAS  Google Scholar 

  72. Zhang J, Shi C, Chen J, Wang Y, Li M (2016) Preparation of ultra-thin and high-quality WO3 compact layers and comparison of WO3 and TiO2 compact layer thickness in planar perovskite solar cells. J Solid State Chem 238:223–228. https://doi.org/10.1016/j.jssc.2016.03.033

    Article  CAS  Google Scholar 

  73. Wang K, Shi Y, Dong Q, Li Y, Wang S, Yu X, Wu M, Ma T (2015) Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. J Phys Chem Lett 6(5):755–759. https://doi.org/10.1021/acs.jpclett.5b00010

    Article  CAS  Google Scholar 

  74. Wang K, Shi Y, Gao L, Chi R, Shi K, Guo B, Zhao L, Ma T (2017) W(Nb)O x -based efficient flexible perovskite solar cells: from material optimization to working principle. Nano Energy 31:424–431. https://doi.org/10.1016/j.nanoen.2016.11.054

    Article  CAS  Google Scholar 

  75. Kim J, Kim G, Kim TK, Kwon S, Back H, Lee J, Lee SH, Kang H, Lee K (2014) Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J Mater Chem A 7(11):6028–6037. https://doi.org/10.1039/c4ta03954h

    Article  Google Scholar 

  76. Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu S, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol RRL 3:1900096. https://doi.org/10.1002/solr.201900096

    Article  CAS  Google Scholar 

  77. Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N (2018) Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv Mater 30(11):1705596. https://doi.org/10.1002/adma.201705596

    Article  CAS  Google Scholar 

  78. Nunes BN, Faustino LA, Muller AV, Polo AS, Patrocinio AOT (2019) Nb2O5 dye-sensitized solar cells. In: Nanomaterials for solar cell applications, pp 287–322. https://doi.org/10.1016/B978-0-12-813337-8.00008-4

    Chapter  Google Scholar 

  79. Wang Z, Lou J, Zheng X, Zhang WH, Qin Y (2019) Solution processed Nb2O5 electrodes for high efficient ultraviolet light stable planar perovskite solar cells. ACS Sustain Chem Eng 7:7421–7429. https://doi.org/10.1021/acssuschemeng.9b00991

    Article  CAS  Google Scholar 

  80. Ling X, Yuan J, Liu D, Wang Y, Zhang Y, Chen S, Wu H, ** F, Wu F, Shi G, Tang X, Zheng J, Liu S, Liu Z, Ma W (2017) Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces 9:23181–23188. https://doi.org/10.1021/acsami.7b05113

    Article  CAS  Google Scholar 

  81. Feng J, Zhu X, Yang Z, Zhang X, Niu J, Wang Z, Zuo S, Priya S, Liu S, Yang D (2018) Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater 30:1801418. https://doi.org/10.1002/adma.201801418

    Article  CAS  Google Scholar 

  82. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci U S A 105(8):2783–2787. https://doi.org/10.1073/pnas.0711990105

    Article  Google Scholar 

  83. Wang KC, Jeng JY, Shen PS, Chang YC, Diau EWG, Tsai CH, Chao TY, Hsu HC, Lin PY, Chen P, Guo TF, Wen TC (2014) P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci Rep 4:4756. https://doi.org/10.1038/srep04756

    Article  CAS  Google Scholar 

  84. You J, Meng L, Bin Song T, Guo TF, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11(1):75–81. https://doi.org/10.1038/nnano.2015.230

    Article  CAS  Google Scholar 

  85. Abdollahi Nejand B, Ahmadi V, Shahverdi HR (2015) New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable Perovskite solar cells. ACS Appl Mater Interfaces 7(39):21807–21818. https://doi.org/10.1021/acsami.5b05477

    Article  CAS  Google Scholar 

  86. **e F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L (2017) Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energ Environ Sci 10(9):1942–1949. https://doi.org/10.1039/c7ee01675a

    Article  CAS  Google Scholar 

  87. Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, **ao L, Bian Z, Huang C (2016) High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8(20):10806–10813. https://doi.org/10.1039/c6nr01927g

    Article  CAS  Google Scholar 

  88. Yu ZK, Fu WF, Liu WQ, Zhang ZQ, Liu YJ, Yan JL, Ye T, Yang WT, Li HY, Chen HZ (2017) Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chin Chem Lett 28:13–18. https://doi.org/10.1016/j.cclet.2016.06.021

    Article  CAS  Google Scholar 

  89. Nejand BA, Ahmadi V, Gharibzadeh S, Shahverdi HR (2016) Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. ChemSusChem 9(3):302–313. https://doi.org/10.1002/cssc.201501273

    Article  CAS  Google Scholar 

  90. Shin SS, Yang WS, Noh JH, Suk JH, Jeon NJ, Park JH, Kim JS, Seong WM, Il Seok S (2015) High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun 6:7410. https://doi.org/10.1038/ncomms8410

    Article  CAS  Google Scholar 

  91. Sadegh F, Akin S, Moghadam M, Mirkhani V, Ruiz-Preciado MA, Wang Z, Tavakoli MM, Graetzel M, Hagfeldt A, Tress W (2020) Highly efficient, stable and hysteresis–less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy 75:105038. https://doi.org/10.1016/j.nanoen.2020.105038

    Article  CAS  Google Scholar 

  92. Sun C, Guan L, Guo Y, Fang B, Yang J, Duan H, Chen Y, Li H, Liu H (2017) Ternary oxide BaSnO3 nanoparticles as an efficient electron-transporting layer for planar perovskite solar cells. J Alloys Compd 722:196–206. https://doi.org/10.1016/j.jallcom.2017.06.121

    Article  CAS  Google Scholar 

  93. Myung CW, Lee G, Kim KS (2018) La-doped BaSnO3 electron transport layer for perovskite solar cells. J Mater Chem A 6:23071–23077. https://doi.org/10.1039/c8ta08764d

    Article  CAS  Google Scholar 

  94. Tavakoli MM, Dastjerdi HT, Prochowicz D, Yadav P, Tavakoli R, Saliba M, Fan Z (2019) Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. J Mater Chem A 7:14753–14760. https://doi.org/10.1039/c9ta03131f

    Article  CAS  Google Scholar 

  95. Akin S, Altintas Y, Mutlugun E, Sonmezoglu S (2019) Cesium–lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy 60:557–566. https://doi.org/10.1016/j.nanoen.2019.03.091

    Article  CAS  Google Scholar 

  96. Numata Y, Sanehira Y, Miyasaka T (2016) Impacts of heterogeneous TiO2 and Al2O3 composite mesoporous scaffold on formamidinium lead trihalide perovskite solar cells. ACS Appl Mater Interfaces 8(7):4608–4615. https://doi.org/10.1021/acsami.5b11067

    Article  CAS  Google Scholar 

  97. Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z, Zhang Y (2016) An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22:223–231. https://doi.org/10.1016/j.nanoen.2016.02.025

    Article  CAS  Google Scholar 

  98. Che M, Zhu L, Zhao YL, Yao DS, Gu XQ, Song J, Qiang YH (2016) Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer. Mater Sci Semicond Process 56:29–36. https://doi.org/10.1016/j.mssp.2016.07.003

    Article  CAS  Google Scholar 

  99. Li Y, Zhao L, Wei S, **ao M, Dong B, Wan L, Wang S (2018) Effect of ZrO 2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells. Appl Surf Sci 439:506–515. https://doi.org/10.1016/j.apsusc.2018.01.005

    Article  CAS  Google Scholar 

  100. Tan H, Jain A, Voznyy O, Lan X, De Arquer FPG, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326):722–726. https://doi.org/10.1126/science.aai9081

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2018R1D1A1B07048610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lokhande, V.C., Kim, C.H., Lokhande, A.C., Lokhande, C.D., Ji, T. (2021). Metal Oxides for Perovskite Solar Cells. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_8

Download citation

Publish with us

Policies and ethics

Navigation