The Atrioventricular Valve in the Animal Kingdom

  • Chapter
  • First Online:
Mitral Valve Disease

Abstract

All animals with a vertebral column have a heart with an atrium and a ventricle, and the atrioventricular junction is guarded by a valve of leaflets of connective tissue. The atrioventricular valve, however, exhibits pronounced variation in morphology and in size relative to the ventricular base. When we compare a broad range of vertebrates, from jawless fishes to human, mapped onto a state-of-the-art phylogeny, we can infer plausible anatomical and physiological causes of this variation. Thus, the evolution of breathing with lungs introduced a circulation in parallel with the systemic circulation, and the atrioventricular valve increased concomitantly in size. The setting of full atrial septation is always associated with the merger of the dorsal and ventral atrioventricular valvar leaflets, yielding a left valve that resembles the human aortic leaflet. Full ventricular septation always associates with the formation of large parietal leaflets, and a pronounced expansion of the atrioventricular junction, particularly rightwards. In the left atrioventricular junction, this results in a left valve that closes in bifoliate fashion. The evolution of warm-bloodedness, and a much elevated cardiac output, in mammals and birds associates with the formation of compact ventricular walls and large papillary muscles with multiple tendinous cords. The mitral valve, furthermore, retains its likeness to the human arrangement both in animals with extremely high left ventricle blood pressure, as in the giraffe, and extremely large stroke volume, as in the elephant. This suggests its common bifoliate configuration is efficient across a broad range of physiological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature. 2013;493:175–80.

    Article  CAS  PubMed  Google Scholar 

  2. Keith A, Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol. 1907;41:172–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Icardo JM. Heart morphology and anatomy. Fish Physiol. 2017;36:1–54.

    Article  Google Scholar 

  4. Burggren W, Farrell AP, Lillywhite HB. Vertebrate cardiovascular systems. In: Handbook of physiology. Hoboken, NJ, USA: Wiley; 1998. p. 215–308.

    Google Scholar 

  5. Johansen K, Burggren WW. Cardiovascular function in the lower vertebrates. In: Bourne GH, editor. Hearts and heart-like organs, Volume 1, Comparative anatomy and development. New York: Academic Press; 1980. p. 61–117.

    Google Scholar 

  6. Crossley DA, Burggren WW, Reiber CL, Altimiras J, Rodnick KJ. Mass transport: circulatory system with emphasis on nonendothermic species. Compr Physiol. 2016;7:17–66.

    Article  PubMed  Google Scholar 

  7. Seymour RS, Blaylock AJ. The principle of laplace and scaling of ventricular wall stress and blood pressure in mammals and birds. Physiol Biochem Zool. 2000;73:389–405.

    Article  CAS  PubMed  Google Scholar 

  8. Amstrup Funder J, Christian Danielsen C, Baandrup U, et al. How heart valves evolve to adapt to an extreme-pressure system: morphologic and biomechanical properties of giraffe heart valves. J Heart Valve Dis. 2017;26:63–71.

    PubMed  Google Scholar 

  9. Benninghoff A. Das Herz. In: Bolk L, Göppert E, Kallius E, Lubosch W, editors. Handbuch der vergleichende Anatomie der Wirbeltiere. Berlin: Urban & Schwarzenberg; 1933. p. 467–555.

    Google Scholar 

  10. Jensen B, Moorman AF, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev. 2014 May;89(2):302–36.

    Article  PubMed  Google Scholar 

  11. Cook AC, Tran VH, Spicer DE, Rob JM, Sridharan S, Taylor A, Anderson RH, Jensen B. Sequential segmental analysis of the crocodilian heart. J Anat. 2017 Oct;231(4):484–99.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kroneman JG, Faber JW, Schouten JC, Wolschrijn CF, Christoffels VM, Jensen B. Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. J Morphol. 2019 Mar;280(3):395–410.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jensen B, van den Berg G, van den Doel R, Oostra RJ, Wang T, Moorman AF. Development of the hearts of lizards and snakes and perspectives to cardiac evolution. PLoS One. 2013;8:e63651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Bakker DM, Wilkinson M, Jensen B. Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona). J Anat. 2015;226:1–12.

    Article  PubMed  Google Scholar 

  15. Hu N, Yost HJ, Clark EB. Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec. 2001;264:1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Icardo JM, Colvee E. The atrioventricular region of the teleost heart. A distinct heart segment. Anat Rec (Hoboken). 2011;294:236–42.

    Article  Google Scholar 

  17. Icardo JM, Tota B, Ip YK. Anatomy of the heart and circulation in lungfishes. In: Phylogeny, anatomy and physiology of ancient fishes. Boca Raton, FL: CRC Press Taylor & Francis Group; 2015. p. 133.

    Chapter  Google Scholar 

  18. Klitgaard T. Morphology and histology of the heart of the Australian lungfish, Neoceratodus forsteri (Krefft). Acta Zool. 1978 Dec;59(3–4):187–98.

    Article  Google Scholar 

  19. Icardo JM, Brunelli E, Perrotta I, Colvee E, Wong WP, Ip YK. Ventricle and outflow tract of the African lungfish Protopterus dolloi. J Morphol. 2005;265:43–51.

    Article  PubMed  Google Scholar 

  20. Burggren WW, Johansen K. Circulation and respiration in lungfishes (Dipnoi). J Morphol. 1986;1:217–36.

    Article  Google Scholar 

  21. Jensen B, Moorman AFM. Evolutionary aspects of cardiac development. In: Rickert-Sperling S, Kelly R, Driscoll DJ, editors. Congenital heart diseases: the broken heart: Springer; 2016. p. 109–17.

    Google Scholar 

  22. Kokubo N, Matsuura M, Onimaru K, Tiecke E, Kuraku S, Kuratani S, Tanaka M. Mechanisms of heart development in the Japanese lamprey, Lethenteron japonicum. Evol Dev. 2010 Jan;12(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  23. Sizarov A, Ya J, de Boer BA, Lamers WH, Christoffels VM, Moorman AF. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation. 2011 Mar 15;123(10):1125–35.

    Article  PubMed  Google Scholar 

  24. van Eif VW, Devalla HD, Boink GJ, Christoffels VM. Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol. 2018 Oct;15(10):617–30.

    Article  Google Scholar 

  25. Bhattacharyya S, Munshi NV. Development of the cardiac conduction system. Cold Spring Harb Perspect Biol. 2020 Dec 1;12(12):a037408.

    Google Scholar 

  26. Henderson and Chaudhry in this volume.

    Google Scholar 

  27. Lincoln J, Alfieri CM, Yutzey KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn. 2004 Jun;230(2):239–50.

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty S, Combs MD, Yutzey KE. Transcriptional regulation of heart valve progenitor cells. Pediatr Cardiol. 2010 Apr 1;31(3):414–21.

    Article  PubMed  Google Scholar 

  29. Christoffels V, Jensen B. Cardiac Morphogenesis: specification of the four-chambered heart. Cold Spring Harb Perspect Biol. 2020 Jan 13;12:a037143.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis ZR, Hanken J. Convergent evolutionary reduction of atrial septation in lungless salamanders. J Anat. 2017 Jan;230(1):16–29.

    Article  PubMed  Google Scholar 

  31. Goodrich ES. Studies on the structure and development of vertebrates. London: Macmillan and Co. Ltd.; 1930.

    Book  Google Scholar 

  32. Jensen B, Wang T, Moorman AFM. Evolution and development of the atrial septum. Anat Rec. 2019;302:32–48.

    Article  Google Scholar 

  33. Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev. 2019;22:e12322.

    Google Scholar 

  34. Anderson, Development, in this volume.

    Google Scholar 

  35. Kardong KV. Vertebrates: comparative anatomy, function, evolution. New York: McGraw-Hill; 2006.

    Google Scholar 

  36. Wessels A, Vermeulen JL, Verbeek FJ, Viragh SZ, Kalman F, Lamers WH, Moorman AF. Spatial distribution of “tissue-specific” antigens in the develo** human heart and skeletal muscle III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec. 1992 Jan;232(1):97–111.

    Article  CAS  PubMed  Google Scholar 

  37. Faber JW, Hagoort J, Moorman AFM, Christoffels VM, Jensen B. Quantified growth of the human embryonic heart. Biol Open. 2021 Jan 25;bio.057059.

    Google Scholar 

  38. Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AF, Wang T, Planken RN, Christoffels VM, Sedmera D, Jensen B. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development. 2019 Jul 15;146(14):dev177121.

    Article  PubMed  Google Scholar 

  39. de Lange FJ, Moorman AF, Anderson RH, Männer J, Soufan AT, Vries CD, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM. Lineage and morphogenetic analysis of the cardiac valves. Circ Res. 2004 Sep 17;95(6):645–54.

    Article  PubMed  Google Scholar 

  40. Lamers WH, Virágh S, Wessels A, Moorman AF, Anderson RH. Formation of the tricuspid valve in the human heart. Circulation. 1995 Jan 1;91(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  41. Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol. 2012 Jun 15;366(2):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prakash S, Borreguero LJ, Sylva M, Flores Ruiz L, Rezai F, Gunst QD, de la Pompa JL, Ruijter JM, van den Hoff MJ. Deletion of Fstl1 (Follistatin-Like 1) from the endocardial/endothelial lineage causes mitral valve disease. Arterioscler Thromb Vasc Biol. 2017 Sep;37(9):e116–30.

    Article  CAS  PubMed  Google Scholar 

  43. Davies F, Francis ET, King TS. The conducting (connecting) system of the crocodilian heart. J Anat. 1952;86:152–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jensen B, Boukens BJ, Crossley IIDA, Conner J, Mohan RA, van Duijvenboden K, Postma AV, Gloschat CR, Elsey RM, Sedmera D, Efimov IR, Christoffels VM. Specialized impulse conduction pathway in the alligator heart. elife. 2018 Mar 22;7:e32120.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yildiz D, Cavusoglu K. The chordae tendineae of the heart in chicken. Anat Histol Embryol. 2004 Aug;33(4):189–91.

    Article  CAS  PubMed  Google Scholar 

  46. Alsafy MA, El-Gendy SA, Enany S, Amine M. Anatomical studies on the atrioventricular valves of the ostrich heart (Struthio camelus). J Vet Anat. 2009 Apr 1;2(1):67–83.

    Article  Google Scholar 

  47. Legler M, Koy L, Kummerfeld N, Fehr M. Differences between the filling velocities of the left and right heart ventricle in racing pigeons (Columba livia F. Domestica) and the Influence of Anesthesia with Isoflurane. Vet Sci. 2019 Dec;6(4):79.

    Article  PubMed Central  Google Scholar 

  48. Anderson RH, Wells FC. This volume. How should we describe the mitral valve and its component parts?

    Google Scholar 

  49. Asami I. Beitrag zur Entwicklung des Kammerseptums im menschlichen Herzen mit besonderer Berücksichtigung der sogenannten Bulbusdrehung. Z Anat Entwicklungsgesch. 1969;128:1–17.

    Article  CAS  PubMed  Google Scholar 

  50. Rowlatt U. Comparative anatomy of the heart of mammals. Zool J Linn Soc-Lond. 1990;98:73–110.

    Article  Google Scholar 

  51. Johansen K, Burggren WW. Venous return and cardiac filling in varanid lizards. J Exp Biol. 1984;113:389–99.

    Article  Google Scholar 

  52. Joyce W, Crossley J, Elsey RM, Wang T, Crossley DA 2nd. Contribution of active atrial contraction to cardiac output in anesthetized American alligators (Alligator mississippiensis). J Exp Biol. 2018;221:JEB178194.

    Article  PubMed  Google Scholar 

  53. Wright S, Sasson Z, Gray T, Chelvanathan A, Esfandiari S, Dimitry J, Armstrong S, Mak S, Goodman JM. Left atrial phasic function interacts to support left ventricular filling during exercise in healthy athletes. J Appl Physiol. 2015 Aug 15;119(4):328–33.

    Article  CAS  PubMed  Google Scholar 

  54. Kirberger RM, Bland-van den Berg P, Darazs B. Doppler echocardiography in the normal dog: part I velocity findings and flow patterns. Vet Radiol Ultrasound. 1992 Nov;33(6):370–9.

    Article  Google Scholar 

  55. Stypmann J, Engelen MA, Breithardt AK, Milberg P, Rothenburger M, Breithardt OA, Breithardt G, Eckardt L, Cordula PN. Doppler echocardiography and tissue Doppler imaging in the healthy rabbit: differences of cardiac function during awake and anaesthetised examination. Int J Cardiol. 2007 Feb 7;115(2):164–70.

    Article  PubMed  Google Scholar 

  56. Schwammenthal E, Popescu BA, Popescu AC, Di Segni E, Guetta V, Rath S, Eldar M, Feinberg MS. Association of left ventricular filling parameters assessed by pulsed wave Doppler and color M-mode Doppler echocardiography with left ventricular pathology, pulmonary congestion, and left ventricular end-diastolic pressure. Am J Cardiol. 2004 Aug 15;94(4):488–91.

    Article  PubMed  Google Scholar 

  57. Kirberger RM, Van Den Berg JS. Pulsed wave Doppler echocardiographic evaluation of intracardiac blood flow in normal sheep. Res Vet Sci. 1993 Sep 1;55(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  58. Guglielmini C, Rocconi F, Brugnola L, Valerio F, Mattei L, Boari A. Echocardiographic and Doppler echocardiographic findings in 11 wolves (Canis lupus). Vet Rec. 2006 Jan 28;158(4):125–9.

    Article  CAS  PubMed  Google Scholar 

  59. Shave RE, Lieberman DE, Drane AL, Brown MG, Batterham AM, Worthington S, Atencia R, Feltrer Y, Neary J, Weiner RB, Wasfy MM. Selection of endurance capabilities and the trade-off between pressure and volume in the evolution of the human heart. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ward JL, Schober KE, Fuentes VL, Bonagura JD. Effects of sedation on echocardiographic variables of left atrial and left ventricular function in healthy cats. J Feline Med Surg. 2012 Oct;14(10):678–85.

    Article  PubMed  Google Scholar 

  61. Katz LN. The role played by the ventricular relaxation process in filling the ventricle. Am J Phys. 1930;95:542–53.

    Article  Google Scholar 

  62. Brecher GA. Critical review of recent work on ventricular diastolic suction. Circ Res. 1958;6:554–66.

    Article  CAS  PubMed  Google Scholar 

  63. Burggren WW, Christoffels VM, Crossley DA, et al. Comparative cardiovascular physiology: future trends, opportunities and challenges. Acta Physiol. 2014;210:257–76.

    Article  CAS  Google Scholar 

  64. Boukens BJ, Kristensen DL, Filogonio R, Carreira LBT, Sartori MR, Abe AS, Currie S, Joyce W, Conner J, Opthof T, Crossley DA II, Wang T, Jensen B. The electrocardiogram of vertebrates: evolutionary changes from ectothermy to endothermy. Prog Biophys Mol Biol. 2019;144:16–29.

    Article  PubMed  Google Scholar 

  65. Detweiler DK. The Mammalian electrocardiogram: comparative features. In: Macfarlane P, van Oosterom A, Pahlm O, Kligfield P, Janse M, Camm J, editors. Comprehensive electrocardiology. London: Springer; 2010. p. 1909–47.

    Chapter  Google Scholar 

  66. Joyce W, Wang T. What determines systemic blood flow in vertebrates? J Exp Biol. 2020 Feb 15;223(4):jeb215335.

    Article  PubMed  Google Scholar 

  67. MacIver DH, Stephenson RS, Jensen B, Agger P, Sánchez-Quintana D, Jarvis JC, Partridge JB, Anderson RH. The end of the unique myocardial band: part I. Anatomical considerations. Eur J Cardiothorac Surg. 2018 Jan 1;53(1):112–9.

    Article  PubMed  Google Scholar 

  68. Webb G, Heatwole H, De Bavay J. Comparative cardiac anatomy of the Reptilia. I. The chambers and septa of the varanid ventricle. J Morphol. 1971 Jul;134(3):335–50.

    Article  CAS  PubMed  Google Scholar 

  69. Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000 Apr;404(6779):759–61.

    Article  CAS  PubMed  Google Scholar 

  70. Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng. 2012 Dec 1;40(12):2652–62.

    Article  PubMed  Google Scholar 

  71. Moorjani N, Rana BS, Wells FC. Anatomy and physiology of the mitral valve. In: Operative mitral and tricuspid valve surgery. London: Springer; 2018. p. 1–20.

    Chapter  Google Scholar 

  72. Bensimon-Brito A, Ramkumar S, Boezio GL, Guenther S, Kuenne C, Helker CS, Sánchez-Iranzo H, Iloska D, Piesker J, Pullamsetti S, Mercader N. TGF-β signaling promotes tissue formation during cardiac valve regeneration in adult zebrafish. Dev Cell. 2020 Jan 6;52(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  73. Goetz RH, Warren JV, Gauer O, et al. Circulation in the giraffe. Circ Res. 1960;8:1049–58.

    Article  CAS  PubMed  Google Scholar 

  74. Brøndum E, Hasenkam JM, Secher NH, et al. Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe. Am J Phys Regul Integr Comp Phys. 2009;297:R1058–65.

    Google Scholar 

  75. Smerup M, Damkjaer M, Brondum E, et al. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output. J Exp Biol. 2016;219:457–63.

    PubMed  Google Scholar 

  76. Poulsen CB, Wang T, Assersen K, Iversen NK, Damkjaer M. Does mean arterial blood pressure scale with body mass in mammals? Effects of measurement of blood pressure. Acta Physiol (Oxford). 2018;222:e13010.

    Article  CAS  Google Scholar 

  77. King RL, Burwell CS, White PD. Some notes on the anatomy of the elephant’s heart. Am Heart J. 1938 Dec 1;16(6):734–42.

    Article  Google Scholar 

  78. Smith FM, West NH, Jones DR. Chapter 9—The cardiovascular system A2. In: Whittow GC, editor. Sturkie’s Avian physiology. 5th ed. San Diego: Academic Press; 2000. p. 141–231.

    Chapter  Google Scholar 

Download references

Acknowledgments

The histological sections of the Dorhn collection (of embryonic lamprey) were kindly made available by Dr. Peter Giere of the Museum für Naturkunde in Berlin (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarke Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, B. (2021). The Atrioventricular Valve in the Animal Kingdom. In: Wells, F.C., Anderson, R.H. (eds) Mitral Valve Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-67947-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67947-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67946-0

  • Online ISBN: 978-3-030-67947-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation