Design Considerations and Trade-offs for Shewhart Control Charts

  • Conference paper
  • First Online:
Frontiers in Statistical Quality Control 13 (ISQC 2019)

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Included in the following conference series:

Abstract

When in-control parameters are unknown, they have to be estimated using a reference sample. The control chart performance in Phase II, which is generally measured in terms of the Average Run Length (ARL) or False Alarm Rate (FAR), will vary across practitioners due to the use of different reference samples in Phase I. This variation is especially large for small sample sizes. Although increasing the amount of Phase I data improves the control chart performance, others have shown that the amount required to achieve a desired in-control performance is often infeasibly high. This holds even when the actual distribution of the data is known. When the distribution of the data is unknown, it has to be estimated as well, along with its parameters. This yields even more uncertainty in control chart performance when parametric models are applied. With these issues in mind, choices have to be made in order to control the performance of control charts. We discuss several of these choices and their corresponding implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albers, W., & Kallenberg, W. C. M. (2004a). Are estimated control charts in control? Statistics, 38(1), 67–79.

    Article  MathSciNet  Google Scholar 

  • Albers, W., & Kallenberg, W. C. M. (2004b). Estimation in Shewhart control charts: Effects and corrections. Metrika, 59(3), 207–234.

    Article  MathSciNet  Google Scholar 

  • Albers, W., & Kallenberg, W. C. M. (2005). New corrections for old control charts. Quality Engineering, 17(3), 467–473.

    Article  Google Scholar 

  • Albers, W., Kallenberg, W. C. M., & Nurdati, S. (2004). Parametric control charts. Journal of Statistical Planning and Inference, 124(1), 159–184.

    Article  MathSciNet  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B (Methodological), 26(2), 211–252.

    Article  MathSciNet  Google Scholar 

  • Chakraborti, S., & Graham, M. A. (2019). Nonparametric statistical process control. New York: Wiley.

    Book  Google Scholar 

  • Chakraborti, S., Van der Laan, P., & Bakir, S. (2001). Nonparametric control charts: an overview and some results. Journal of Quality Technology, 33(3), 304–315.

    Article  Google Scholar 

  • Chakraborti, S., Qiu, P., & Mukherjee, A. (2015). Editorial to the special issue: Nonparametric statistical process control charts. Quality and Reliability Engineering International, 31(1), 1–2.

    Article  Google Scholar 

  • Chen, G. (1997). The mean and standard deviation of the run length distribution of \(\bar{X}\) charts when control limits are estimated. Statistica Sinica, 7(3), 789–798.

    MATH  Google Scholar 

  • Chou, Y. M., Polansky, A. M., & Mason, R. L. (1998). Transforming nonnormal data to normality in statistical process control. Journal of Quality Technology, 30(2), 133–141.

    Article  Google Scholar 

  • Cryer, J. D., & Ryan, T. P. (1990). The estimation of sigma for an \(X\) chart: \(MR/d_2\) or \(S/c_4\)? Journal of Quality Technology, 22(3), 187–192.

    Article  Google Scholar 

  • Diko, M. D., Goedhart, R., Chakraborti, S., Does, R. J. M. M., & Epprecht, E. K. (2017). Phase II control charts for monitoring dispersion when parameters are estimated. Quality Engineering, 29(4), 605–622.

    Article  Google Scholar 

  • Epprecht, E. K., Loureiro, L. D., & Chakraborti, S. (2015). Effect of the amount of phase I data on the phase II performance of \({S}^2\) and \({S}\) control charts. Journal of Quality Technology, 47(2), 139–155.

    Article  Google Scholar 

  • Faraz, A., Woodall, W. H., & Heuchenne, C. (2015). Guaranteed conditional performance of the \({S}^2\) control chart with estimated parameters. International Journal of Production Research, 53(14), 4405–4413.

    Article  Google Scholar 

  • Gandy, A., & Kvaløy, J. T. (2013). Guaranteed conditional performance of control charts via bootstrap methods. Scandinavian Journal of Statistics, 40(4), 647–668.

    Article  MathSciNet  Google Scholar 

  • Goedhart, R. (2018). Statistical Control of Shewhart Control Charts. Doctoral Dissertation, University of Amsterdam

    Google Scholar 

  • Goedhart, R., Schoonhoven, M., & Does, R. J. M. M. (2016). Correction factors for Shewhart \(X\) and \(\bar{X}\) control charts to achieve desired unconditional ARL. International Journal of Production Research, 54(24), 7464–7479.

    Article  Google Scholar 

  • Goedhart, R., Schoonhoven, M., & Does, R. J. M. M. (2017a). Guaranteed in-control performance for the Shewhart \({X}\) and \(\bar{X}\) control charts. Journal of Quality Technology, 49(2), 155–171.

    Article  Google Scholar 

  • Goedhart, R., da Silva, M. M., Schoonhoven, M., Epprecht, E. K., Chakraborti, S., Does, R. J. M. M., et al. (2017b). Shewhart control charts for dispersion adjusted for parameter estimation. IISE Transactions, 49(8), 838–848.

    Article  Google Scholar 

  • Goedhart, R., Schoonhoven, M., & Does, R. J. M. M. (2018). On Guaranteed In-Control Performance for the Shewhart \({X}\) and \(\bar{X}\) Control Charts. Journal of Quality Technology, 50(1), 130–132.

    Article  Google Scholar 

  • Goedhart, R., Schoonhoven, M., & Does, R. J. M. M. (2020). Nonparametric control of the conditional performance in statistical process monitoring. Journal of Quality Technology, 52(4), 355–369.

    Google Scholar 

  • Hawkins, D. M. (1987). Self-starting CUSUM charts for location and scale. The Statistician, 36(4), 299–316.

    Article  Google Scholar 

  • Huberts, L. C. E., Schoonhoven, M., Goedhart, R., Diko, M. D., & Does, R. J. M. M. (2018). The performance of control charts for large non-normally distributed datasets. Quality and Reliability Engineering International, 34(6), 979–996.

    Article  Google Scholar 

  • Huberts, L. C. E., Schoonhoven, M., & Does, R. J. M. M. (2019). The effect of continuously updating control chart limits on control chart performance. Quality and Reliability Engineering International, 35(4), 1117–1128.

    Google Scholar 

  • Jardim, F. S., Chakraborti, S., & Epprecht, E. K. (2020). Two perspectives for designing a phase II control chart with estimated parameters: The case of the Shewhart chart. Journal of Quality Technology, 52(2), 198–217.

    Google Scholar 

  • Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., & Woodall, W. H. (2006). Effects of parameter estimation on control chart properties: a literature review. Journal of Quality Technology, 38(4), 349–364.

    Article  Google Scholar 

  • Jones, M. A., & Steiner, S. H. (2012). Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. International Journal for Quality in Health Care, 24(2), 176–181.

    Article  Google Scholar 

  • Jones-Farmer, L. A., Woodall, W. H., Steiner, S. H., & Champ, C. W. (2014). An overview of phase I analysis for process improvement and monitoring. Journal of Quality Technology, 46(3), 265–280.

    Article  Google Scholar 

  • Krishnamoorthy, K., & Mathew, T. (2009). Statistical tolerance regions: theory, applications, and computation. New York, NY: Wiley.

    Book  Google Scholar 

  • Mahmoud, M. A., Henderson, G. R., Epprecht, E. K., & Woodall, W. H. (2010). Estimating the standard deviation in quality-control applications. Journal of Quality Technology, 42(4), 348–357.

    Article  Google Scholar 

  • Psarakis, S., Vyniou, A. K., & Castagliola, P. (2014). Some recent developments on the effects of parameter estimation on control charts. Quality and Reliability Engineering International, 30(8), 1113–1129.

    Article  Google Scholar 

  • Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50(1), 49–65.

    Article  Google Scholar 

  • Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 213–224.

    Article  Google Scholar 

  • Quesenberry, C. P. (1993). The effect of sample size on estimated limits for \(\bar{X}\) and \(X\) control charts. Journal of Quality Technology, 25(4), 237–247.

    Article  Google Scholar 

  • Saleh, N. A., Mahmoud, M. A., Jones-Farmer, L. A., Zwetsloot, I. M., & Woodall, W. H. (2015a). Another look at the EWMA control chart with estimated parameters. Journal of Quality Technology, 47(4), 363–382.

    Article  Google Scholar 

  • Saleh, N. A., Mahmoud, M. A., Keefe, M. J., & Woodall, W. H. (2015b). The difficulty in designing Shewhart \(\bar{X}\) and X control charts with estimated parameters. Journal of Quality Technology, 47(2), 127–138.

    Article  Google Scholar 

  • Schoonhoven, M., & Does, R. J. M. M. (2012). A robust standard deviation control chart. Technometrics, 54(1), 73–82.

    Article  MathSciNet  Google Scholar 

  • Schoonhoven, M., Nazir, H. Z., Riaz, M., & Does, R. J. M. M. (2011). Robust location estimators for the \(\bar{X}\) control chart. Journal of Quality Technology, 43(4), 363–379.

    Article  Google Scholar 

  • Tsai, T. R., Lin, J. J., Wu, S. J., & Lin, H. C. (2005). On estimating control limits of \(\bar{X}\) chart when the number of subgroups is small. International Journal of Advanced Manufacturing Technology, 26(11–12), 1312–1316.

    Article  Google Scholar 

  • Young, D. S., & Mathew, T. (2014). Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics. Journal of Nonparametric Statistics, 26(3), 415–432.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Goedhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goedhart, R. (2021). Design Considerations and Trade-offs for Shewhart Control Charts. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 13. ISQC 2019. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-030-67856-2_2

Download citation

Publish with us

Policies and ethics

Navigation