Integrated Weed Management in Crop** Systems: Principles, Methods and Experience of Field Trials

  • Chapter
  • First Online:
Exploring and Optimizing Agricultural Landscapes

Part of the book series: Innovations in Landscape Research ((ILR))

  • 1126 Accesses

Abstract

In recent decades, weeds in field crops have been predominantly controlled by herbicides, at least in developed countries. However, the weak diversity in crop** systems, in combination with the one-sided use of herbicides, has created problems such as herbicide-resistant weeds. This globally increasing threat is further worsened by the continuous loss of registered herbicides. Consequently, there is a considerable need for more integrated weed management (IWM) focusing on preventive weed control. IWM is a complex, long-term approach which involves reducing weed emergence and reproduction. The key element of successful IWM is diverse crop rotation, supported by site-specific primary soil tillage and stubble tillage. However, IWM is not fully accepted by farmers, mainly because its efficacy and costs are hard to predict. Thus, more research and guidance are needed on decision support, weed thresholds and prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amann A (1991) Einfluss von Saattermin und Grundbodenbearbeitung auf die Verunkrautung in verschiedenen Kulturen. PhD thesis, University of Hohenheim, 148 p

    Google Scholar 

  • Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55(3):239–248

    Article  CAS  Google Scholar 

  • Beckie HJ, Johnson EN, Blackshaw RE, Gan Y (2008) Weed suppression by Canola and Mustard cultivars. Weed Technol 22(1):182–185

    Article  Google Scholar 

  • Brandsæter LO, Mangerud K, Helgheim M, Berge TW (2017) Control of perennial weeds in spring cereals through stubble cultivation and mouldboard ploughing during autumn or spring. Crop Prot 98:16–23

    Article  Google Scholar 

  • Bückmann H, Bøjer OM, Montull JM, Röhrig M, Rydahl P, Taberner A, Verschwele A (2018) DSS-IWM: an improved European decision support system for integrated weed management. Julius-Kühn-Archiv 458:205–208

    Google Scholar 

  • Buhler DD (2002) Challenges and opportunities for integrated weed management. Weed Sci 50:273–280

    Article  CAS  Google Scholar 

  • Dass A, Shekhawat K, Choudhary AK, Sepat S, Rathore SS, Mahajan G, Chauhan BS (2017) Weed management in rice using crop competition—a review. Crop Prot 95:45–52

    Article  Google Scholar 

  • EU (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. http://data.europa.eu/eli/dir/2009/128/oj. Accessed 15 Mar 2020

  • Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manage Sci 69:1099–1105

    Article  CAS  Google Scholar 

  • Gronle A, Böhm H (2014) Untersuchungen zur Unkrautunterdrückung in Rein- und Mischfruchtbeständen von Wintererbsen unterschiedlichen Wuchstyps. Julius-Kühn-Archiv 443:431–440

    Google Scholar 

  • Harker KN, O’Donovan JT (2013) Recent weed control, weed management, and integrated weed management. Weed Technol 27:1–11

    Article  Google Scholar 

  • Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manage Sci 70:1306–1315

    Article  CAS  Google Scholar 

  • Lutman PJW, Moss SR, Cook S, Welham SJ (2013) A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res 53:299–313

    Article  Google Scholar 

  • Marin C, Weiner J (2014) Effects of density and sowing pattern on weed suppression and grain yield in three varieties of maize under high weed pressure. Weed Res 54:467–474

    Article  Google Scholar 

  • Melander B, Rasmussen I, Bàrberi P (2005) Integrating physical and cultural methods of weed control—examples from European research. Weed Sci 53(3):369–381

    Article  CAS  Google Scholar 

  • Moss S (2010) Integrated weed management (IWM): will it reduce herbicide use? Commun Agric Appl Biol Sci 75(2):9–17

    CAS  PubMed  Google Scholar 

  • Naylor REL (ed) (2002) Weed management handbook. Ninth edition, 423 pp, © 2002 by British Crop Protection Enterprises Print ISBN:9780632057320, Online ISBN:9780470751039. https://doi.org/10.1002/9780470751039

  • Naylor REL, Drummond C (2002) Integrated weed management. In: Weed management handbook. Naylor REL (ed) (Ninth edn), published 2002 by Blackwell Science Ltd, ISBM 0-632-05732-7, 302–310

    Google Scholar 

  • Pallutt B (1999) Einfluss von Fruchtfolge, Bodenbearbeitung und Herbizidanwendung auf Populationsdynamik und Konkurrenz von Unkräutern in Wintergetreide. (Influence of crop rotation, tillage and herbicide use on population dynamics and competition of weeds in winter cereals. With English summary). Gesunde Pflanzen 51:109–120

    Google Scholar 

  • Rasmussen I (2004) The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res 44:12–20

    Article  Google Scholar 

  • Richner N, Holderegger R, Linder HP, Walter T (2015) Reviewing change in the arable flora of Europe: a meta-analysis. Weed Res 55:1–13

    Article  Google Scholar 

  • Salonen J, Hyvönen T, Jalli H (2011) Composition of weed flora in spring cereals in Finland—a fourth study. Agric Food Sci 20:245–261

    Article  Google Scholar 

  • Storkey J, Westbury D (2007) Managing arable weeds for biodiversity. Pest Manage Sci 63:517–523

    Article  CAS  Google Scholar 

  • Swanton CJ, Mahoney KJ, Chandler K, Gulden RH (2008) Integrated weed management: knowledge-based weed management systems. Weed Sci 56(1):168–172

    Article  CAS  Google Scholar 

  • Teasdale JR (1998) Influence of corn (Zea mays) population and row spacing on corn and velvetleaf (Abutilon theophrasti) yield. Weed Sci 46:447–453

    Article  CAS  Google Scholar 

  • Vasileiadis VP, Otto S, van Dijk W, Urek G, Leskovšek R, Verschwele A, Furlan L, Sattin M (2015) On-farm evaluation of integrated weed management tools for maize production in three different agro-environments in Europe: agronomic efficacy, herbicide use reduction and economic sustainability. Euro J Agron 63:71–78

    Article  Google Scholar 

  • Verschwele A (2009) Versuche zum falschen Saatbett bei Winterweizen. In: Mayer J et al.: Beiträge zur 10. Wissenschaftstagung Ökologischer Landbau ETH Zürich (1):183–185

    Google Scholar 

  • Verschwele A (2014) Unkrautunterdrückung und Unkrauttoleranz bei Weizensorten – relevante Eigenschaften für den Integrierten Pflanzenschutz. Julius-Kühn-Archiv 443:465–474

    Google Scholar 

  • Vigneault C, Benoît DL (2001) Electrical weed control: theory and applications. In: Vincent C, Panneton B, Fleurat-Lessard F (eds) Physical control methods in plant protection. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wellhausen C, Ulber L, Rissel D (2018) Investigation of crop management strategies for control of herbicide-resistant blackgrass (Alopecurus myosuroides). Julius-Kühn-Archiv 45:82–86

    Google Scholar 

  • Young S, Pierce FS (eds) (2014) Automation: the future of weed control in crop** systems. Springer Netherlands. https://doi.org/10.1007/978-94-007-7512-1

  • Zimdahl RL (2013) Fundamentals of weed science, (Fourth edn). Academic Press, Elsevier Inc., 664 p

    Google Scholar 

  • Zimdahl RL (2019) Sustainable agriculture and environment—An ethical perspective, plenary presentation at the 27th Asian-Pacific Weed Science Society Conference, held at Kuching, Malaysia during. https://weeds-apwss.scholasticahq.com/article/11530.pdf. Accessed 24 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Verschwele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verschwele, A. (2021). Integrated Weed Management in Crop** Systems: Principles, Methods and Experience of Field Trials. In: Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F. (eds) Exploring and Optimizing Agricultural Landscapes. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-67448-9_36

Download citation

Publish with us

Policies and ethics

Navigation