Interaction of Titanium Dioxide Nanoparticles with Plants in Agro-ecosystems

  • Chapter
  • First Online:
Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems

Abstract

The remarkable progress in nanotechnology has significantly augmented the utilization of nanoscaled (≤100 nm) nanomaterials (NMs) in wide range of products. Titanium dioxide NPs (TiO2-NPs) are the most commonly used NMs among all that are unabatedly used in a variety of industrial and consumer products. This demand-based excessive production and application of TiO2-NPs ultimately lead way to their release in the environment which causes potential risks to environmental components and their functioning. Plants, being the primary component of any ecosystem, are the initial point for the NPs’ interaction that is requisite feature for risk assessment. Researchers over the globe have observed that these NPs pose both detrimental and beneficial effects on plants; however, these impacts are determined by their mode of interaction depending on experimental conditions. Besides, due to their photocatalytic and growth-promoting activities, researchers are paying attention on develo** some TiO2-NP-based formulations so that they can be used in agriculture to improve crop yield and quality and also to protect plants from various pests and pathogens. It is reported that TiO2-NPs also improve the plant performance under various abiotic stresses. Under the light of current knowledge, this chapter provides an overview of TiO2-NPs, their interactions, i.e., uptake, translocation and accumulation with plants, feedback of plants at different levels (viz. morphological, physiological, biochemical and molecular) with an overview on intrinsic mechanism of TiO2-NPs detoxification within plants. Eventually, it gives a brief knowledge on application of TiO2-NPs in agriculture as growth boosters and protecting agents against various biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum(Linaceae) under well-watered and drought stress conditions. Braz J Bot 39:139–146

    Article  Google Scholar 

  • Al-Bartya AM, Hamzab RZ (2015) Larvicidal, antioxidant activities and perturbation of Transminases activities of Titanium dioxide NPs synthesized using Moringa oleifera leaves extract against the red palm weevil (Rhynchophorus ferrugineus). Eur J Pharm Med Res 2:49–54

    Google Scholar 

  • Ali T, Tripathi P, Azam A, Raza W, Ahmed AS, Ahmed A, Muneer M (2017) Photocatalytic performance of Fe-doped TiO2 NPs under visible-light irradiation. Mater Res Express 4:015022

    Article  CAS  Google Scholar 

  • Amini S, Maali-Amiri R, Mohammadi R, Kazemi-Shahandashti SS (2017) cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 NPs during cold stress. Plant Physiol Biochem 111:39–49

    Article  CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide NPs. Environ Toxicol Chem 35:2223–2229

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide NPs can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  Google Scholar 

  • Azimi R, Feizi H, Hosseini MK (2013) Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). not Sci Biol 5:325–331

    Article  CAS  Google Scholar 

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Policy Watch 7:295–296

    Google Scholar 

  • Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) Modified TiO2 based photocatalysts for improved air and health quality. J Materiomics 3:3–16

    Article  Google Scholar 

  • Binh CTT, Peterson CG, Tong T, Gray KA, Gaillard J-F, Kelly JJ (2015) Comparing acute effects of a nano-TiO2 pigment on cosmopolitan freshwater phototrophic microbes using high-throughput screening. PLoS ONE 10:e0125613

    Article  CAS  Google Scholar 

  • Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598

    Article  CAS  Google Scholar 

  • Bowen P, Menzies J, Ehret D, Samuels L, Glass AD (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912

    Article  CAS  Google Scholar 

  • Boxall A, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health. Nanomedicine 2:919–927

    Article  CAS  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 NPs as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vician arbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Cremonini R, Bottega S, Spanò C (2014) Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma 251(6):1471–1479. https://doi.org/10.1007/s00709-014-0649-5

  • Chao SHL, Choi HS (2005) Method for providing enhanced photosynthesis. Korea Research Institute of Chemical Technology. Bulletin, South Korea Press, 10

    Google Scholar 

  • Chaudhary I, Singh V (2020) Titanium dioxide NPs and its impact on growth, biomass and yield of agricultural crops under environmental stress: a review. J Nanosci Nanotechnol 10:1–8

    Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873

    Article  CAS  Google Scholar 

  • Choi HG, Moon BY, Bekhzod K, Park KS, Kwon JK, Lee JH, Cho MW, Kang NJ (2015) Effects of foliar fertilization containing titanium dioxide on growth, yield and quality of strawberries during cultivation. Hortic Environ Biotechnol 56:575–581

    Article  CAS  Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manage Horticult Ecosyst 19:131–151

    Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered NPs in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  Google Scholar 

  • DaCosta MVJ, Sharma PK (2015) Influence of titanium dioxide NPs on the photosynthetic and biochemical processes in Oryza sativa. Int J Recent Sci Res 6:2445–2451

    Google Scholar 

  • Darko E, Gierczik K, Hudak O, Forgo P, Pal M, Türkösi E, Kovacs V, Dulai S, Majlath I, Molnar I, Janda T(2017) Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLOS one 12(3)

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica NPs against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO NPs negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13:822–828

    Article  CAS  Google Scholar 

  • Du W, Gardea-Torresdey Jorge L, **e Y, Yin Y, Zhu J, Zhang X, Ji R, Gu K, Peralta-Videa Jose R, Guo H (2017) Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci Total Environment 578:408–416. https://doi.org/10.1016/j.scitotenv.2016.10.197

  • Ebrahimi A, Galavi M, Ramroudi M, Moaveni P (2016) Effect of TiO2 NPs on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.). J Mol Biol Res 6:58–66

    Article  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  Google Scholar 

  • Fan W, Peng R, Li X, Ren J, Liu T, Wang X (2016) Effect of titanium dioxide NPs on copper toxicity to Daphnia magna in water: role of organic matter. Water Res 105:129–137

    Article  CAS  Google Scholar 

  • Faraji J, Sepehri A (2019) Ameliorative effects of TiO2 NPs and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. J Seed Sci 41(3):309–317

    Article  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide NPs to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seedgermination and seedling growth. Biol Trace Elem Res 146:101–106

    Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511

    Article  CAS  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal NPs in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  Google Scholar 

  • Foltête AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522

    Article  CAS  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide NPs affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14:75–83

    Article  CAS  Google Scholar 

  • Fries R, Simkó M, (2012) Nano-titanium dioxide (Part I): basics, production, applications. Institute of Technology Assessment of the Austrian Academy of Sciences. NanoTrust-Dossiers No. 033en–November 2012. https://doi.org/10.1016/j.envpol.2013.10.004

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Article  CAS  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) NPs at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  Google Scholar 

  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020) Titanium dioxide NPs (TiO2-NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10:1–14

    Article  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Marquina RMC, C, Ibarra MR, Rubiales D, Pérez-de-Luque, A, (2008) NPs as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101:187–195

    Article  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of NPs against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Goswami L, Kim KH, Deep A, Das P, Bhattacharya SS, Kumar S, Adelodun AA (2017) Engineered nano particles: nature, behavior, and effect on the environment. J Environ Manage 196:297–315

    Article  CAS  Google Scholar 

  • Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus., P. aeruginosa and E. coli. Beilstein J. Nanotechnol 4:345–351

    Article  CAS  Google Scholar 

  • Haghighi M, da Silva JAT (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop SciBiotechnol17:221–227.

    Google Scholar 

  • Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide NPs on growth and chlorophyll a content of Picochlorumsp. Environ Sci Pollut Res 23:2821–2830

    Article  CAS  Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  CAS  Google Scholar 

  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide NPs in living organisms. Int J Environ Sci 75:40–53

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and NPs titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot Cluj Napoca 41:201–207

    Google Scholar 

  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from NPs in crops and wetland plants. Int J Phytoremediat. 15:142–153

    Article  CAS  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Impact of foliar application of nano micronutrient fertilizers and titanium dioxide NPs on the growth and yield components of barley under supplemental irrigation. Acta Agric Slov 107:265–276

    Article  Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Han Y, Wang Y, **ng, B (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    Google Scholar 

  • Jiang F, Shen Y, Ma C, Zhang X, Cao W, Rui Y (2017) Effects of TiO2 NPs on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLoS ONE 12(5):e0178088

    Google Scholar 

  • Jiang G, Li X, Lan M, Shen T, Lv X, Dong F, Zhang S (2017) Monodisperse bismuth NPs decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway. Appl Catal B: Environ 205:532–540

    Article  CAS  Google Scholar 

  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered NPs in aquatic organisms with special emphasis on fish—Review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118:141–151

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474

    Article  CAS  Google Scholar 

  • Karami A, Sepehri A (2018) Nano titanium dioxide and nitric oxide alleviate salt induced changes in seedling growth, physiological and photosynthesis attributes of barley. Zemdirbyste-Agric 105:123–132

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1692

    Article  Google Scholar 

  • Khan MN (2016) Nano-titanium Dioxide (Nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci 11:1–11

    CAS  Google Scholar 

  • Khodakovskaya MV, Lahiani MH (2014) NPs and plants: from toxicity to activation of growth. Hand Nanotoxicol Nanomed Stem Cell Use Toxicol 121–130

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  Google Scholar 

  • Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, Exbrayat JM, Oughton DH, Joner EJ (2011) Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ Int 37:1105–1110

    Article  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M, (2011) Investigation of titanium dioxide NPs toxicity and uptake by plants. J Phys: Conf Ser 304(1):012057 (IOP Publishing)

    Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 NPs in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carriere M (2012b) Comparative uptake and impact of TiO2 nano particles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    Google Scholar 

  • Lei Z, Mingyu S, **ao W, Chao L, Chunxiang Q, Liang C, Hao H, **aoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  CAS  Google Scholar 

  • Li J, Naeem MS, Wang X, Liu L, Chen C, Ma N et al (2015) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS ONE 10(12):e0143885

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Google Scholar 

  • Lin Y, Qiqiang W, ** W, Wenshui X, Yuming D (2011) Synthesis of Ag/TiO2 core/shell NPs with antibacterial properties. B Korean Chem Soc 32:2607–2610

    Article  Google Scholar 

  • Lindberg HK, Falck GCM, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    Article  CAS  Google Scholar 

  • Lu JW, Li FB, Guo T, Lin LW, Hou MF, Liu TX (2006) TiO2 photocatalytic antifungal technique for crops diseases control. J. Environ. Sci 18:397–401

    CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered NPs (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2000) Effect of nanoscale titanium dioxide particles on the germination andgrowth of Canola (Brassica napus). J Ornamental Hortic Plants 3(1):25–32

    Google Scholar 

  • Mahmoodzadeh H, Aghili R (2014) Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 NPs. J Chem Health Risks 4:29–36

    CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamen Horti Plants 3:25–32

    Google Scholar 

  • Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 NPs on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150:376–380

    Article  CAS  Google Scholar 

  • Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169:249–257

    Article  CAS  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ (2008) Environmental behavior and ecotoxicity of engineered NPs to algae, plants, and fungi. Ecotoxicol 17:372–386

    Article  CAS  Google Scholar 

  • Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 NPs. Front Plant Sci 6:1043

    Google Scholar 

  • Mattiello A, Marchiol L (2017) Application of nanotechnology in agriculture: assessment of TiO2 nanoparticle effects on Barley. In: Janus M (ed) Application of titanium dioxide. In Tech: London, UK, pp 23–39

    Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of NPs with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1. Elsevier Academic Press, New York, pp 159–180

    Chapter  Google Scholar 

  • Moaveni P, Farahani HA, Maroufi K (2011) Effect of Ti [O. sub. 2] NPs spraying on wheat (Triticum aestivum L.) under field condition. Adv Environ Biol 2208–2211.

    Google Scholar 

  • Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 NPs on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiology 61:768–775

    Article  CAS  Google Scholar 

  • Mohammadi H, Esmailpour M, Gheranpaye A (2016) Effects of TiO2 nanoparticles and water-deficit stresson morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agriculturae Slovenica 107(2):385–396

    Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MG (2016) Effect of NPs on red clover and its symbiotic microorganisms. J Nanotechnol 14:36

    Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 20996–21001

    Google Scholar 

  • Montazer M, Seifollahzadeh S (2011) Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties. Color Technol 127:322–327

    Article  CAS  Google Scholar 

  • Moreno-Olivas F, Gant VU, Johnson KL, Peralta-Videa JR, Gardea-Torresdey JL (2014) Random amplified polymorphic DNA reveals that TiO2 NPs are genotoxic to Cucurbita pepo. J Zhejiang Univ Sci A 15:618–623

    Article  CAS  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2:247

    Google Scholar 

  • Motyka O, Chlebíková L, Kutláková KM, Seidlerová J (2019) Ti and Zn Content in Moss shoots after exposure to TiO2 and ZnO NPs: biomonitoring possibilities. B Environ Contam Tox 102:218–223

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO2 NPs in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle—nanoparticle interactions. J Am Chem Soc 132:14986–14994

    Article  CAS  Google Scholar 

  • Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2016) Differential toxicity of bare and hybrid ZnO NPs in green pea (Pisum sativum L.): A life cycle study. Front Plant Sci 6:1242

    Google Scholar 

  • Mukherjee K, Acharya K, Biswas A, Jana NR (2020) TiO2 NPs Co-doped with nitrogen and fluorine as visible light-activated antifungal agents. ACS Appl Nano Mater 1–29

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered NPs to algae, plants, and fungi. Ecotoxicol 17:372–386

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, **a T, Hoek EM, SomasundaranP KF, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Nowack B, Baalousha M, Bornhöft N, Chaudhry Q, Cornelis G, Cotterill J, Gondikas A, Hassellöv M, Lead J, Mitrano DM, von der Kammer F (2015) Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environ Sci Nano 2:421–428

    Article  CAS  Google Scholar 

  • Nyamukamba P, Okoh O, Mungondori H, Taziwa R, Zinya S (2018) Synthetic methods for titanium dioxide NPs: a review. In: Yang D (eds) Titanium dioxide—Material for a sustainable environment. Intech Open, pp 151–175

    Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–3068

    Article  CAS  Google Scholar 

  • Owolade OF, Ogunleti DO (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J PltProt Res 48:329–335

    Google Scholar 

  • Pachapur VL, Larios AD, Cledón M, Brar SK, Verma M, Surampalli RY (2016) Behavior and characterization of titanium dioxide and silver NPs in soils. Sci Total Environ 563:933–943

    Article  CAS  Google Scholar 

  • Paret M, Vallad G, Averett D, Jones J, Olson S (2012) Photocatalysis: Effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology. 103: https://doi.org/10.1094/PHYTO-08-12-0183-R

  • Paret ML, Palmateer AJ, Knox GW (2013a) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare.’ Hort Sci 48:189–192

    Google Scholar 

  • Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013b) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236

    Google Scholar 

  • Patrick JW, Tyerman SD, Bel AJE (2015) Long-distance transport. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley, West Sussex, pp 658–710

    Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  Google Scholar 

  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 NPs: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechno Rep 5:22–26

    Article  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide NPs on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Article  Google Scholar 

  • Ramsden CS, Henry TB, Handy RD (2013) Sub-lethal effects of titanium dioxide NPs on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413

    Article  CAS  Google Scholar 

  • Ranjan S, Ramalingam C (2016) Titanium dioxide NPs induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14:487–494

    Article  CAS  Google Scholar 

  • Rezaei F, Moaveni P, Mozafari H, Morteza E (2015) Investigation of different concentrations and times of nano-TiO2 foliar application on traits of soybean (Glycine max L.) at Shahr-e-Qods. Iran. Int J Biosci 6:109–114

    Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide NPs. Environ Sci Pollut 22:10551–10558

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea- Torresdey JL (2011) Interaction of NPs with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  Google Scholar 

  • Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69:288–301

    Article  CAS  Google Scholar 

  • Roh JY, Park YK, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 NPs on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172

    Article  CAS  Google Scholar 

  • Rui M, Ma C, White JC, Hao Y, Wang Y, Tang X, Yang J, Jiang F, Ali A, Rui Y, Cao W (2018) Metal oxide NPs alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environ Sci Nano 5:2088–2102

    Article  CAS  Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187

    Article  CAS  Google Scholar 

  • Santos Filho RD, Vicari T, Santos SA, Felisbino K, Mattoso N, Sant’Anna-Santos BF, Cestari MM, Leme DM (2019) Genotoxicity of titanium dioxide NPs and triggering of defense mechanisms in Allium cepa. Genet Mol Biol 42:425–435

    Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 10:257–278

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, JabasiniM TM, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 NPs in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    Article  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao LJ, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotronverification of TiO accumulation in cucumber fruit: a possible pathway of TiO nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Google Scholar 

  • Shah SNA, Shah Z, Hussain M, Khan M (2017) Hazardous effects of titanium dioxide NPs in ecosystem. Bioinorg Chem Appl 2017:1–12

    Article  CAS  Google Scholar 

  • Shaker AM, Zaki AH, Abdel-Rahim EFM, Khedr MH (2017) TiO2 NPs as an effective nanopesticide for cotton leaf worm. Agric Eng Int: CIGR J Special issue:61–68

    Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant 112(4):487–494

    Article  CAS  Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide NPs in aquatic environment—a review. J Environ Sci Health A 44:1485–1495

    Article  CAS  Google Scholar 

  • Shi W, Yan Y, Yan X (2013) Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem Eng J. 215:740–746

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of NPs in plants. In: SiddiquiMH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 19–35

    Google Scholar 

  • Siddiqui ZA, Khan MR, Abd Allah EF, Parveen A (2019) Titanium dioxide and zinc oxide NPs affect some bacterial diseases, and growth and physiological changes of beetroot. Int J Veg Sci 25:409–430

    Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide NPs strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  • Singh R, Srivastava PK, Singh VP, Dubey G, Prasad SM (2012) Light intensity determines the extent of mercury toxicity in the cyanobacterium Nostoc muscorum. Acta Physiol Plant 34:1119–1131. https://doi.org/10.1007/s11738-011-0909-3

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J Environ Manage 170:88–96

    Google Scholar 

  • Singh P, Singh R, Borthakur A, Srivastava P, Srivastava N, Tiwary D, Mishra PK (2016) Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecology Environ 1:131–140

    Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 NPs on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide NPs with soil components and plants: current knowledge and future research needs–a critical review. Environ Sci Nano 5:257–278

    Article  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured NPs in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide NPs induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  Google Scholar 

  • Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2015) Phenotypic and genomic responses to titanium dioxide and cerium oxide NPs in Arabidopsis germinants. Environ Toxicol Chem 34:70–83

    Article  CAS  Google Scholar 

  • Vignardi CP, Hasue FM, Sartório PV, Cardoso CM, Machado AS, Passos MJ, Santos TC, Nucci JM, Hewer TL, Watanabe IS, Gomes V (2015) Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide NPs in the marine fish Trachinotus carolinus (Linnaeus, 1766). AquatToxicol 158:218–229

    CAS  Google Scholar 

  • Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN (2019) Studies on the titanium dioxide NPs: biosynthesis, applications and remediation. SN Appl Sci 1:310

    Article  CAS  Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—A soil microcosm experiment. Chemosphere 147:88–97

    Article  CAS  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 NPs disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820

    Article  CAS  Google Scholar 

  • Wang S, Su R, Nie S, Sun M, Zhang J, Wu D,Moustaid-Moussa N (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25:363–376

    Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res 15:1417

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide NPs in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  • Wu B, Zhu L, Le XC (2017) Metabolomics analysis of TiO2 NPs induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 230:302–310

    Article  CAS  Google Scholar 

  • Yan A, Chen Z (2019) Impacts of silver NPs on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci 20:1003

    Article  CAS  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growingspinach. Biol Trace Elem Res. 110(2):179–90. https://doi.org/10.1385/bter:110:2:179

  • Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2008) Synthesis of visible-light-active TiO -based photocatalysts bycarbon and nitrogen do**. J Catalysis 260(1):128–33

    Google Scholar 

  • Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88

    Article  CAS  Google Scholar 

  • Zhang P, Cui H, Zhong X, Li L (2007) Effects of nano-TiO2 semiconductor sol on prevention from plant diseases. Nanoscience 12:1–6

    Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012) Biotransformation of ceria NPs in cucumber plants. ACS Nano 6:9943–9950

    Article  CAS  Google Scholar 

  • Zhao L, Chen Y, Chen Y, Kong X, Hua Y (2016) Effects of pH on protein components of extracted oil bodies fromdiverse plant seeds and endogenous protease-induced oleosin hydrolysis. Food Chem. 1(200):125–33. https://doi.org/10.1016/j.foodchem.2016.01.034

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 NPs from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933

    Article  CAS  Google Scholar 

  • Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium Dioxide NPs: Prospects and Applications in Medicine. Nanomaterials 10:387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the University Grand Commission, New Delhi, for financial support to Ms Kajal Patel and Indu Tripathi. Authors are also thankful to Professor K.S. Rao, Head, Department of Botany, University of Delhi, New Delhi, for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Patel, K., Tripathi, I. (2021). Interaction of Titanium Dioxide Nanoparticles with Plants in Agro-ecosystems. In: Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M. (eds) Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66956-0_4

Download citation

Publish with us

Policies and ethics

Navigation