Evolution of Ziegler-Natta Catalysts for Polymerization of Olefins

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

This chapter provides a brief account of the discovery and gradual evolution of Ziegler-Natta catalysts for polymerization of various olefins, α-olefins, and functional olefins. The structure of first and second generation catalysts is introduced, and the different mechanisms proposed by the scientists for the polymerization of ethylene using this catalyst is discussed. Subsequently, the control of branching and mechanism to produce stereospecific poly-α-olefins is elaborated. Development of catalysts for synthesis of stereo-controlled polyolefins is discussed along with methods to determine the stereospecificity of the polymers. The evolution of metallocene-based Ziegler-Natta catalysts and the mechanism of polymerization based on these catalysts are briefed. The following section discusses about the catalyst compositions useful for polymerization of functional olefin monomers and their copolymerization with propylene. Development of catalyst compositions based on Pd, Ni, Cu, and Fe is discussed, and subsequent polymerization mechanism is included. A series of catalysts synthesized using vanadium and various chelated ligands are discussed in context of their catalytic activity and the structure of polymer formed. The last chapter unveils some of the recent advances in these categories of catalysts and future scope of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ziegler K, Holzkamp E, Breil H, Martin H (1955) Polymerization of ethylene and other olefins. Angew Chem 67(16):426

    Article  CAS  Google Scholar 

  2. Natta N, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77(6):1708–1710

    Article  CAS  Google Scholar 

  3. Natta G, Pino P, Mazzanti G, Giannini U, Mantica E, Peraldo M (1957) The nature of some soluble catalysts for low pressure ethylene polymerization. J Polym Sci 26(112):120–123

    Article  CAS  Google Scholar 

  4. Furukawa J, Tsuruta T (1959) Catalytic reactivity and stereospecificity of organometallic compounds in olefin polymerization. J Polym Sci 36(130):275–186

    Article  CAS  Google Scholar 

  5. Rodriguez LAM, van Looy HM (1966) Studies on Ziegler-Natta catalysts. Part V. Stereospecificity of the active center. J Polym Sci A Polym Chem 4(8):1971–1992

    Article  CAS  Google Scholar 

  6. Cossee P (1960) On the reaction mechanism of the ethylene polymerization with heterogeneous Ziegler-Natta catalysts. Tetrahedron Lett 38(1):12–16

    Article  Google Scholar 

  7. Ludlum DB, Anderson AW, Ashby CE (1958) The polymerization of ethylene by lower valent compounds of titanium. J Am Chem Soc 80(6):1380–1384

    Article  CAS  Google Scholar 

  8. Ziegler K (1959) International Conference on Co-ordination Chemistry, London. The Chem Soc Spec Publ 12(1). Chemistry Society, London

    Google Scholar 

  9. Ivin KJ, Rooney JJ, Stewart CD, Green MLH, Mahtab R (1978) Mechanism for the stereospecific polymerization of olefins by Ziegler–Natta catalysts. J Chem Soc Chem Commun 14:604–606

    Article  Google Scholar 

  10. Soto J, Steigerwald ML, Grubbs RH (1982) Concerning the mechanism of Ziegler-Natta polymerization: isotope effects on propagation rates. J Am Chem Soc 104(16):4479–4480

    Article  CAS  Google Scholar 

  11. Corradini P, Barone V, Fusco R, Guerra G (1979) Analysis of models for the Ziegler-Natta stereospecific polymerization on the basis of non-bonded interactions at the catalytic site—I. The Cossee model. Eur Polym J 15(12):1133–1141

    Article  CAS  Google Scholar 

  12. Langer AW Jr (1977) Base effects on selected Ziegler-type catalysts. Ann N Y Acad Sci 295(1):110–126

    Article  CAS  Google Scholar 

  13. Breslow DS, Newburg NR (1959) Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as soluble catalysts for the polymerization of ethylene1,2. J Am Chem Soc 81(1):81–86

    Article  CAS  Google Scholar 

  14. Andresen A, Cordes HG, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sinn H, Vollmer HJ (1976) Halogen-free soluble Ziegler catalysts for the polymerization of ethylene. Control of molecular weight by choice of temperature. Angew Chem 15(10):630–632

    Article  Google Scholar 

  15. Kaminsky W, Külper K, Niedoba S (1986) Olefin polymerization with highly active soluble zirconium compounds using aluminoxane as co-catalyst. Macromol Chem 3(1):377–387

    Article  CAS  Google Scholar 

  16. Pino P, Mulhaupt R (1980) Stereospecific polymerization of propylene: an outlook 25 years after its discovery. Angew Chem 19(11):857–875

    Article  Google Scholar 

  17. Ewen JA (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc 106(21):6355–6364

    Article  CAS  Google Scholar 

  18. Zambelli A, Locatelli P, Provasoli A, Ferro DR (1980) Correlation between 13C NMR chemical shifts and conformation of polymers. 3. Hexad sequence assignments of methylene. Spec Polyprop 13(2):267–270

    CAS  Google Scholar 

  19. Boor J Jr, Youngman EA (1966) Preparation and characterization of syndiotactic polypropylene. J Polym Sci A Polym Chem 4(7):1861–1884

    Article  CAS  Google Scholar 

  20. Bovey FA, Tiers GVD (1960) Polymer NSR spectroscopy. II. The high resolution spectra of methyl methacrylate polymers prepared with free radical and anionic initiators. J Polym Sci 44(143):173–182

    Article  CAS  Google Scholar 

  21. Moore EPJ (1996) Polypropylene handbook: polymerization, characterization, properties, applications. Hanser Publishers, Munich

    Google Scholar 

  22. Uehara H, Yamazaki Y, Kanamoto T (1996) Tensile properties of highly syndiotactic polypropylene. Polymer 37(1):57–64

    Article  CAS  Google Scholar 

  23. Collette JW, Tullock CW, MacDonald RN, Buck WH, Su ACL, Harrell JR, Mulhaupt R, Anderson BR (1989) Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts. 1. Synthesis and properties of high molecular weight stereoblock homopolymers. Macromolecules 22(10):3851–3858

    Article  CAS  Google Scholar 

  24. Corradini P, Guerra G, Pucciariello R (1985) New model of the origin of the stereospecificity in the synthesis of syndiotactic polypropylene. Macromolecules 18(10):2030–2034

    Article  CAS  Google Scholar 

  25. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans 9:1413–1418

    Article  Google Scholar 

  26. Wild FRWP, Zsolnai L, Huttner G, Brintzinger HH (1982) ansa-Metallocene derivatives IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands. J Organomet Chem 232(1):233–147

    Article  CAS  Google Scholar 

  27. Tshuva EY, Goldberg I, Kol M (2000) Isospecific living polymerization of 1-hexene by a readily available nonmetallocene C2-symmetrical zirconium catalyst. J Am Chem Soc 122(43):10706–10707

    Article  CAS  Google Scholar 

  28. Marques MM, Correia SG, Ascenso JR, Ribeiro AFG, Gomes PT, Dias AR, Foster P, Rausch MD, Chien JCW (1999) Polymerization with TMA-protected polar vinyl comonomers. I. Catalyzed by group 4 metal complexes with η5-type ligands. J Polym Sci A Polym Chem 37(14):2457–2469

    Article  CAS  Google Scholar 

  29. Luo S, Vela J, Lief GR, Jordan RF (2007) Copolymerization of ethylene and alkyl vinyl ethers by a (phosphine- sulfonate)PdMe catalyst. J Am Chem Soc 129(29):8946–8947

    Article  CAS  Google Scholar 

  30. Nozaki K, Kusumoto S, Noda S, Kochi T, Chung LW, Morokuma K (2010) Why did incorporation of acrylonitrile to a linear polyethylene become possible? Comparison of phosphine–sulfonate ligand with diphosphine and imine–phenolate ligands in the Pd-catalyzed ethylene/acrylonitrile copolymerization. J Am Chem Soc 132(45):16030–16042

    Article  CAS  Google Scholar 

  31. Leicht H, Gottker-Schnetmann I, Mecking S (2013) Incorporation of vinyl chloride in insertion polymerization. Angew Chem 52(14):3963–3966

    Article  CAS  Google Scholar 

  32. Ito S, Munakata K, Nakamura A, Nozaki K (2009) Copolymerization of vinyl acetate with ethylene by palladium/alkylphosphine–sulfonate catalysts. J Am Chem Soc 131(41):14606–14607

    Article  CAS  Google Scholar 

  33. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118(1):267–268

    Article  CAS  Google Scholar 

  34. Gaikwad SR, Deshmukh SS, Gonnade RG, Rajamohanan PR, Chikkali SH (2015) Insertion copolymerization of difunctional polar vinyl monomers with ethylene. ACS Macro Lett 4(9):933–937

    Article  CAS  Google Scholar 

  35. Guironnet D, Caporaso L, Neuwald B, Göttker-Schnetmann I, Cavallo L, Mecking S (2010) Mechanistic insights on acrylate insertion polymerization. J Am Chem Soc 132(12):4418–4426

    Article  CAS  Google Scholar 

  36. Suzuki Y, Hayashi T (1997) JP Patent 10298231 to Mitsui Chemicals Inc., Japan

    Google Scholar 

  37. Stibrany RT, Schulz DN, Kacker S, Patil AO (1997) WO Patent Application 9930822 to Exxon Research and Engineering Company

    Google Scholar 

  38. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Stromberg S, White AJP, Williams DJ (1999) Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: synthesis, structures, and polymerization studies. J Am Chem Soc 121(38):8728–8740

    Article  CAS  Google Scholar 

  39. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100(4):1169–1204

    Article  CAS  Google Scholar 

  40. Small BL, Brookhart M (1999) Polymerization of propylene by a new generation of iron catalysts: mechanisms of chain initiation, propagation, and termination. Macromolecules 32(7):2120–2130

    Article  CAS  Google Scholar 

  41. Small BL, Brookhart M (1998) Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J Am Chem Soc 120(28):7143–7144

    Article  CAS  Google Scholar 

  42. Nomura K, Warit S, Imanishi Y (1999) Olefin polymerization by the (Pybox)RuX2(ethylene)–MAO catalyst system. Macromolecules 32(14):4732–4734

    Article  CAS  Google Scholar 

  43. Carrick WL, Kluiber RW, Bonner EF, Wartman LH, Rugg FM, Smyth JJ (1960) Transition metal catalysts. I. Ethylene polymerization with a soluble catalyst formed from an aluminum halide, tetraphenyltin and a vanadium halide. J Am Chem Soc 82(15):3883–3887

    Article  CAS  Google Scholar 

  44. Nomura K, Zhang S (2011) Design of vanadium complex catalysts for precise olefin polymerization. Chem Rev 111(3):2342–2362

    Article  CAS  Google Scholar 

  45. Junghanns E, Gumboldt O, Bier G (1962) Polymerization of ethylene and propylene to amorphous copolymers with catalysts made from vanadium oxychloride and aluminum haloalkylene. Makromol Chem 58(1):18–42

    Article  CAS  Google Scholar 

  46. Christman DL, Keim GI (1968) Reactivities of nonconjugated dienes used in preparation of terpolymers in homogeneous systems. Macromolecules 1(4):358–363

    Article  CAS  Google Scholar 

  47. Doi Y, Ueki S, Keii T (1978) “Living” coordination polymerization of propene initiated by the soluble V(acac)3-Al(C2H5)2Cl system. Macromolecules 12(5):814–819

    Article  Google Scholar 

  48. Doi Y, Koyama T, Soga K (1985) Synthesis of a propene—methyl methacrylate diblock copolymer via “living” coordination polymerization. Makromol Chem 186(1):11–15

    Article  CAS  Google Scholar 

  49. Ma Y, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C (1999) Vanadium-catalyzed ethylene–propylene copolymerization: the question of the metal oxidation state in Ziegler–Natta polymerization promoted by (β-diketonate)3V. Organometallics 18(15):2773–2781

    Article  CAS  Google Scholar 

  50. Brandsma MJR, Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) An amidinate ligand with a pendant amine functionality; synthesis of a vanadium(III) complex and ethene polymerization catalysis. Eur J Inorg Chem 1998(12):1867–1870

    Article  Google Scholar 

  51. Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) Electron-deficient vanadium(III) alkyl and allyl complexes with amidinate ancillary ligands. Organometallics 17(18):4090–4095

    Article  CAS  Google Scholar 

  52. Feghali K, Harding DJ, Reardon D, Gambarotta S, Yap G, Wang Q (2002) Stability of metal–carbon bond versus metal reduction during ethylene polymerization promoted by a vanadium complex: the role of the aluminum cocatalyst. Organometallics 21(5):968–976

    Article  CAS  Google Scholar 

  53. Janas Z, Wiśniewska D, Jerzykiewicz LB, Sobota P, Drabenta K, Szczegot K (2007) Synthesis, structural studies and reactivity of vanadium complexes with tridentate (OSO) ligand. Dalton Trans:2065–2069

    Google Scholar 

  54. Hagen H, Boersma J, Lutz M, Spek AL, van Koten G (2001) Vanadium(III) and -(IV) complexes with O,N-chelating aminophenolate ligands: synthesis, characterization and activity in ethene/propene copolymerization. Eur J Inorg Chem 2001(1):117–123

    Article  Google Scholar 

  55. Golisz SR, Bercaw JE (2009) Synthesis of early transition metal bisphenolate complexes and their use as olefin polymerization catalysts. Macromolecules 42(22):8751–8762

    Article  CAS  Google Scholar 

  56. Lorber C, Donnadieu B, Choukroun R (2000) Synthesis and X-ray characterization of a monomeric Cp-free d1-imido–vanadium(IV) complex. Dalton Trans (24):4497–4498

    Google Scholar 

  57. Desmangles N, Gambarotta S, Bensimon C, Davis S, Zahalka HJ (1998) Preparation and characterization of (R2N)2VCl2 [R=Cy, i-Pr] and its activity as olefin polymerization catalyst. Organomet Chem 562(1):53–60

    Article  CAS  Google Scholar 

  58. Biazek M, Czaja K (2008) Dichlorovanadium (IV) complexes with salen-type ligands for ethylene polymerization. J Polym Sci A Polym Chem 46(20):6940–6949

    Article  CAS  Google Scholar 

  59. Hagen H, Bezemer C, Boersma J, Kooijman H, Lutz M, Spek AL, van Koten G (2000) Vanadium(IV) and -(V) complexes with O,N-chelating aminophenolate and pyridylalkoxide ligands. Inorg Chem 39(18):3970–2977

    Article  CAS  Google Scholar 

  60. Liguori D, Centore R, Csok Z, Tuzi A (2004) Polymerization of propene and 1,3-butadiene with vanadyl(V) monoamidinate precatalysts and MAO or dialkylaluminum chloride cocatalysts. Macromol Chem Phys 205(8):1058–1063

    Article  CAS  Google Scholar 

  61. Meppelder GM, Halbach TS, Spaniol TP, Mülhaupt R, Okuda J (2009) A vanadium(V) complex with a tetradentate [OSSO]-type bis(phenolato) ligand: synthesis, structure, and ethylene polymerization activity. J Organomet Chem 694(7):1235–1237

    Article  CAS  Google Scholar 

  62. Redshaw C, Rowan MA, Warford L, Homden DM, Arbaoui A, Elsegood MRJ, Dale SH, Yamato T, Casas CP, Matsui S, Matsuura S (2007) Oxo- and Imidovanadium complexes incorporating methylene- and dimethyleneoxa-bridged calix[3]- and -[4]arenes: synthesis, structures and ethylene polymerisation catalysis. Chem Eur J 13(4):1090–1107

    Article  CAS  Google Scholar 

  63. Nomura K, Sagara A, Imanishi Y (2002) Olefin polymerization and ring-opening metathesis polymerization of norbornene by (arylimido)(aryloxo)vanadium(v) complexes of the type VX2(NAr)(OAr’). Remarkable effect of aluminum cocatalyst for the coordination and insertion and ring-opening metathesis polymerization. Macromolecules 35(5):1583–1590

    Article  CAS  Google Scholar 

  64. Wang W, Nomura K (2005) Remarkable effects of aluminum cocatalyst and comonomer in ethylene copolymerizations catalyzed by (Arylimido)(aryloxo)vanadium complexes: efficient synthesis of high molecular weight ethylene/norbornene copolymer. Macromolecules 38(14):5905–5913

    Article  CAS  Google Scholar 

  65. Takasao G, Wada T, Thakur A, Chammingkwan P, Terano M, Taniike T (2019) Machine learning-aided structure determination for TiCl4–capped MgCl2 nanoplate of heterogeneous Ziegler–Natta catalyst. ACS Catal 9(3):2599–2609

    Article  CAS  Google Scholar 

  66. Vittoria A, Meppelder A, Friederichs N, Busico V, Cipullo R (2020) Ziegler–Natta catalysts: regioselectivity and “hydrogen response”. ACS Catal 10(1):644–651

    Article  CAS  Google Scholar 

  67. Yu Y, Cipullo R, Boisson C (2019) Alkynyl ether labeling: a selective and efficient approach to count active sites of olefin polymerization catalysts. ACS Catal 9(4):3098–3103

    Article  CAS  Google Scholar 

  68. Desert X, Carpentier JF, Kirillov E (2019) Quantification of active sites in single-site group 4 metal olefin polymerization catalysis. Coord Chem Rev 386(1):50–68

    Article  CAS  Google Scholar 

  69. Moscato BM, Zhu B, Landis CR (2010) GPC and ESI-MS analysis of labeled poly(1-hexene): rapid determination of initiated site counts during catalytic alkene polymerization reactions. J Am Chem Soc 132(41):14352–14354

    Article  CAS  Google Scholar 

  70. Bossers KW, Valadian R, Zanoni S, Smeets R, Friederichs N, Garrevoet J, Meirer F, Weckhuysen BM (2020) Correlated X-ray ptychography and fluorescence nano-tomography on the fragmentation behavior of an individual catalyst particle during the early stages of olefin polymerization. J Am Chem Soc 142(8):3691–3695

    Article  CAS  Google Scholar 

  71. Piovano A, Thushara KS, Morra E, Chiesa M, Groppo E (2016) Unraveling the catalytic synergy between Ti3+ and Al3+ sites on a chlorinated Al2O3: a tandem approach to branched polyethylene. Angew Chem 128(37):11369–11372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhoury Sudhir Kumar Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, A.S.K., Ojha, U. (2021). Evolution of Ziegler-Natta Catalysts for Polymerization of Olefins. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_21

Download citation

Publish with us

Policies and ethics

Navigation