Sampling-Based Approximate Skyline Calculation on Big Data

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

Abstract

The existing algorithms for processing skyline queries cannot adapt to big data. This paper proposes two approximate skyline algorithms based on sampling. The first algorithm obtains a fixed size sample and computes the approximate skyline on the sample. The error of the first algorithm is relatively small in most cases, and is almost independent of the input relation size. The second algorithm returns an \((\epsilon ,\delta )\)-approximation for the exact skyline. The size of sample required by the second algorithm can be regarded as a constant relative to the input relation size, so is the running time.

This work was supported by the National Natural Science Foundation of China under grant 61732003, 61832003, 61972110 and U1811461.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Z.D., Chao, C.C., Hwang, H.K., Liang, W.Q.: On the variance of the number of maxima in random vectors and its applications. In: Advances in Statistics, pp. 164–173. World Scientific (2008)

    Google Scholar 

  2. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans. Database Syst. (TODS) 33(4), 1–49 (2008)

    Article  Google Scholar 

  3. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms for computing maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. J. ACM (JACM) 25(4), 536–543 (1978)

    Article  MathSciNet  Google Scholar 

  5. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

    Google Scholar 

  6. Buchta, C.: On the average number of maxima in a set of vectors. Inf. Process. Lett. 33(2), 63–65 (1989)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., Miao, D., Li, Y.: Deletion propagation for multiple key preserving conjunctive queries: approximations and complexity. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 506–517. IEEE (2019)

    Google Scholar 

  8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, vol. 3, pp. 717–719 (2003)

    Google Scholar 

  9. Devroye, L.: A note on finding convex hulls via maximal vectors. Inf. Process. Lett. 11(1), 53–56 (1980)

    Article  MathSciNet  Google Scholar 

  10. Gao, X., Li, J., Miao, D., Liu, X.: Recognizing the tractability in big data computing. Theor. Comput. Sci. 838, 195–207 (2020)

    Article  MathSciNet  Google Scholar 

  11. Godfrey, P.: Skyline cardinality for relational processing. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24627-5_7

    Chapter  Google Scholar 

  12. Godfrey, P., Shipley, R., Gryz, J., et al.: Maximal vector computation in large data sets. VLDB 5, 229–240 (2005)

    Google Scholar 

  13. Han, X., Li, J., Yang, D., Wang, J.: Efficient skyline computation on big data. IEEE Trans. Knowl. Data Eng. 25(11), 2521–2535 (2012)

    Article  Google Scholar 

  14. Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5_14

    Chapter  Google Scholar 

  15. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Databases, pp. 275–286. Elsevier (2002)

    Google Scholar 

  16. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM (JACM) 22(4), 469–476 (1975)

    Article  MathSciNet  Google Scholar 

  17. Lee, K.C., Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-sky: an efficient skyline query processing framework based on z-order. VLDB J. 19(3), 333–362 (2010)

    Article  Google Scholar 

  18. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative skyline operator. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 86–95. IEEE (2007)

    Google Scholar 

  19. Magnani, M., Assent, I., Mortensen, M.L.: Taking the big picture: representative skylines based on significance and diversity. VLDB J. 23(5), 795–815 (2014)

    Article  Google Scholar 

  20. Miao, D., Cai, Z., Li, J.: On the complexity of bounded view propagation for conjunctive queries. IEEE Trans. Knowl. Data Eng. 30(1), 115–127 (2017)

    Article  Google Scholar 

  21. Miao, D., Cai, Z., Li, J., Gao, X., Liu, X.: The computation of optimal subset repairs. Proc. VLDB Endow. 13(12), 2061–2074 (2020)

    Article  Google Scholar 

  22. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted database repair of functional dependency violations. Theor. Comput. Sci. 609, 594–605 (2016)

    Article  MathSciNet  Google Scholar 

  23. Miao, D., Yu, J., Cai, Z.: The hardness of resilience for nested aggregation query. Theor. Comput. Sci. 803, 152–159 (2020)

    Article  MathSciNet  Google Scholar 

  24. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478 (2003)

    Google Scholar 

  25. Søholm, M., Chester, S., Assent, I.: Maximum coverage representative skyline. In: EDBT, pp. 702–703 (2016)

    Google Scholar 

  26. Tan, K.L., Eng, P.K., Ooi, B.C., et al.: Efficient progressive skyline computation. VLDB 1, 301–310 (2001)

    Google Scholar 

  27. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 892–903. IEEE (2009)

    Google Scholar 

  28. **ngxing **ao, J.L.: Sampling based approximate skyline calculation on big data (2020). https://arxiv.org/abs/2008.05103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Li .

Editor information

Editors and Affiliations

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**ao, X., Li, J. (2020). Sampling-Based Approximate Skyline Calculation on Big Data. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation