AI and Immunoinformatics

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

In the last decade, artificial intelligence (AI) has revolutionized many scientific areas. Due to huge amount of data being generated in biomedical fields, AI has been a crucial computational tool to improve predicting modeling and simulation. AI can find hidden pattern in biological data (genomic, proteomic, transcriptomic, small molecules, etc.) and connect the unknown parts of a big puzzle. Immune system is for sure one of the most complicated molecular networks in human body. A good question would be how these immune cells and proteins recognize the normal inner cells from other foreign or abnormal cells (infected or cancerous cells) and viruses. For many years, scientists have been working to answer this question in detail. Understanding the immune system is equal to ability to trigger it against strong viruses and bacteria. AI has been hel** scientists in the field immunoinformatic and vaccine discovery to improve the efficacy of predicted epitopes. However, dealing with immunological data has been very challenging, and the representation of each sample has not been easy. In this chapter, we discuss how AI started to improve vaccinology and how it will be leading the future of computational vaccine development and immunoinformatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2011;7(S1):S1. Available from: https://aacijournal.biomedcentral.com/articles/10.1186/1710-1492-7-S1-S1

  2. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation [Internet]. Front Immunol. 2017;8:1. Frontiers Research Foundation. Available from: www.frontiersin.org

  3. Berger A. HLA ty**. BMJ. 2001;322(7280):218. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1119473/

  4. Charles A Janeway J, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. 2001 [cited 2021 Feb 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27156/

  5. Tarantola A. Four thousand years of concepts relating to rabies in animals and humans, its prevention and its cure [Internet]. Trop Med Infect Dis. 2017;2, MDPI AG, [cited 2021 Feb 16]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082082/

  6. Littman RJ. The plague of Athens: epidemiology and paleopathology [internet]. Mt Sinai J Med. 2009;76:456–67. Available from: https://pubmed.ncbi.nlm.nih.gov/19787658/

  7. Band IC, Reichel M. Al rhazes and the beginning of the end of smallpox [internet]. JAMA Dermatol. 2017;153:420. American Medical Association. Available from: https://pubmed.ncbi.nlm.nih.gov/28492840/

  8. Doherty M, Robertson MJ. Some early trends in immunology. Trends Immunol. 2004;25:623–31. Elsevier Current Trends.

    Google Scholar 

  9. Dalfardi B, Esnaashary MH, Yarmohammadi H. Rabies in medieval Persian literature – the Canon of Avicenna (980–1037 AD). Infect Dis Poverty. 2014;3(1):7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933285/.

  10. Riedel S. Edward Jenner and the History of Smallpox and Vaccination. Baylor Univ Med Cent Proc. 2005;18(1):21–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200696/.

  11. Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases [Internet]. Front Immunol. 2014;5:491. Frontiers Media S.A.; [cited 2021 Feb 16]. Available from: www.frontiersin.org

  12. Weinberger SE, Cockrill BA, Mandel J. Lung defense mechanisms. In: Principles of pulmonary medicine. Elsevier: Amsterdam, Netherlands 2019. p. 285–96.

    Google Scholar 

  13. Harasymowicz NS, Rashidi N, Savadipour A, Wu C, Tang R, Bramley J, et al. Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity. FASEB J. 2021;35(3):e21417. Available from: https://onlinelibrary.wiley.com/doi/10.1096/fj.202001970R

  14. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity [Internet]. Nat Immunol. 2004;5:971–4. Nature Publishing Group. Available from: http://www.nature.com/natureimmunology

  15. Crooke SN, Ovsyannikova IG, Kennedy RB, Poland GA. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci Rep. 2020;10(1):14179. https://doi.org/10.1038/s41598-020-70864-8.

  16. Plotkin SA, Vaccines, vaccination, and vaccinology [Internet]. J Infect Dis. 2003;187:1349–59. Oxford Academic. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/374419

  17. Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative methods of vaccine delivery: an overview of edible and intradermal vaccines. J Immunol Res. 2019;2019. Hindawi Limited. https://www.hindawi.com/journals/jir/2019/8303648/

  18. Zhang GL, Sun J, Chitkushev L, Brusic V. Big data analytics in immunology: a knowledge-based approach. Biomed Res Int. 2014; 2014. https://www.hindawi.com/journals/bmri/2014/437987/

  19. Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, et al. Artificial intelligence for COVID-19 drug discovery and vaccine development. Front Artif Intell. 2020;3:65. Available from: www.frontiersin.org

  20. Goodswen SJ, Kennedy PJ, Ellis JT. Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology. Bioinformatics. 2014;30(16):2381–3. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu300

  21. Tomar N, De RK. Immunoinformatics: an integrated scenario [Internet]. Immunology. 2010;131:153–68. Wiley-Blackwell. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967261/.

  22. Nascimento AM, Vismari LF, Molina CBST, Cugnasca PS, Camargo JB, De Almeida JR, et al. A systematic literature review about the impact of artificial intelligence on autonomous vehicle safety. IEEE Trans Intell Transp Syst. 2020;21:4928–46. Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  23. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43. Available from: http://svn.bmj.com/cgi/doi/10.1136/svn-2017-000101

  24. Heisele B, Ho P, Poggio T. Face recognition with support vector machines: global versus component-based approach. Proc IEEE Int Conf Comput Vis. 2001;2:688–94.

    Google Scholar 

  25. Arshadi AK, Salem M, Collins J, Yuan JS, Chakrabarti D. Deepmalaria: artificial intelligence driven discovery of potent antiplasmodials. Front Pharmacol. 2020;10. Article number is 1526. https://www.frontiersin.org/articles/10.3389/fphar.2019.01526/full

  26. Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G. Credit card fraud detection and concept-drift adaptation with delayed supervised information. In: Proceedings of the international joint conference on neural networks. Institute of Electrical and Electronics Engineers Inc.; 2015 international joint conference on Neural networks (IJCNN). IEEE. Killarney, Ireland.

    Google Scholar 

  27. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Peters B, et al. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res. 2020;19(6):2304–15. Available from: https://pubmed.ncbi.nlm.nih.gov/32308001/

  28. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449–54. Available from: http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/

  29. Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases [internet]. Npj Digit Med. 2020;3:1–11. https://doi.org/10.1038/s41746-020-0229-3. Nature Research.

  30. Pulendran B, Li S, Nakaya HI. Systems vaccinology [Internet]. Immunity. 2010;33:516–29. Available from: https://pubmed.ncbi.nlm.nih.gov/21029962/

  31. Gonzalez-Dias P, Lee EK, Sorgi S, de Lima DS, Urbanski AH, Silveira EL, et al. Methods for predicting vaccine immunogenicity and reactogenicity. Hum Vaccin Immunother. 2020;16(2):269–76. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062420/.

  32. Chandir S, Siddiqi DA, Hussain OA, Niazi T, Shah MT, Dharma VK, et al. Using predictive analytics to identify children at high risk of defaulting from a routine immunization program: feasibility study. J Med Internet Res. 2018;20(9). Available from: https://pubmed.ncbi.nlm.nih.gov/30181112/

  33. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150947/.

  34. Chen B, Khodadoust MS, Olsson N, Wagar LE, Fast E, Liu CL, et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat Biotechnol. 2019;37(11):1332–43. https://doi.org/10.1038/s41587-019-0280-2.

  35. Fast E, Altman RB, Chen B. Potential T-cell and B-cell epitopes of 2019-nCoV [Internet]. bioRxiv; 2020 [cited 2021 Feb 16]. p. 2020.02.19.955484. https://doi.org/10.1101/2020.02.19.955484

  36. Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep. 2021;11(1):3238. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33547334

  37. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28472356/

  38. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-4

  39. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8(9). Available from: https://pubmed.ncbi.nlm.nih.gov/24058508/

  40. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10.

    Google Scholar 

  41. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A. 2020;117(3):1496–503. Available from: https://www.pnas.org/content/117/3/1496

  42. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. bioRxiv; 2020.

    Google Scholar 

  43. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. T cells and MHC proteins. 2002 [cited 2021 Feb 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26926/

  44. Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B. Kidney transplantation: the challenge of human leukocyte antigen and its therapeutic strategies [Internet]. J Immunol Res. 2018;2018. Hindawi Limited; [cited 2021 Feb 16]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859822/

  45. Metzgar RS, Dowell BL, Lachman LB, Jones NH, George FW. Classification of human leukemia by membrane antigen analysis with Xenoantisera. Cancer Res. 1981;41(11 Part 2):4781–85. https://pubmed.ncbi.nlm.nih.gov/6794906/

  46. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628004/.

  47. Agarwal RK, Kumari A, Sedai A, Parmar L, Dhanya R, Faulkner L. The case for high resolution extended 6-loci HLA ty** for identifying related donors in the Indian subcontinent. Biol Blood Marrow Transplant. 2017;23(9):1592–6. Available from: https://pubmed.ncbi.nlm.nih.gov/28603069/

  48. Tiercy JM. How to select the best available related or unrelated donor of hematopoietic stem cells? [Internet]. Haematologica. 2016;101:680–7. Ferrata Storti Foundation. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013969/.

  49. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368(6468):215–21. Available from: https://pubmed.ncbi.nlm.nih.gov/8145819/

  50. Bhasin M, Raghava GPS. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci. 2007:31–42. Available from: https://pubmed.ncbi.nlm.nih.gov/17426378/

  51. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43(D1):D405–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384014/.

  52. Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol. 2017;13(8):e1005725. Hertz T, editor. Available from: https://dx.plos.org/10.1371/journal.pcbi.1005725

  53. Bravi B, Tubiana J, Cocco S, Monasson R, Mora T, Walczak A. Flexible machine learning prediction of antigen presentation for rare and common HLA-I alleles. bioRxiv [Internet]; 2020 Apr 25 [cited 2021 Feb 16];2020.04.25.061069. https://doi.org/10.1101/2020.04.25.061069

  54. Naito T, Suzuki K, Hirata J, Kamatani Y, Matsuda K, Toda T, et al. A multi-task convolutional deep learning method for HLA allelic imputation and its application to trans-ethnic MHC fine-map** of type 1 diabetes [Internet]. medRxiv; 2020 [cited 2021 Feb 16]. p. 2020.08.10.20170522. https://doi.org/10.1101/2020.08.10.20170522

  55. Wang W, Kiik M, Peek N, Curcin V, Marshall IJ, Rudd AG, et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS One. 2020;15(6):e0234722. Beiki O, editor. Available from: https://dx.plos.org/10.1371/journal.pone.0234722

  56. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 2018;9(2):513–30.

    Google Scholar 

  57. Walia RR, El-Manzalawy Y, Honavar VG, Dobbs D. Sequence-based prediction of RNA-binding residues in proteins. In: Methods in molecular biology [internet]. Humana Press Inc.; 2017. p. 205–35. [cited 2021 Feb 28]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796408/.

  58. Bormann N, Koliszak A, Kasper S, Schoen L, Hilpert K, Volkmer R, et al. A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep. 2017;7(1):1–14. Available from: http://aps.unmc.edu/AP/main.php

  59. Salem M, Khormali A, Arshadi AK, Webb J, Yuan J-S. TranScreen: transfer learning on graph-based anti-cancer virtual screening model. Big Data Cogn Comput. 2020;4(3):16. Available from: https://www.mdpi.com/2504-2289/4/3/16

  60. Weimer D, Scholz-Reiter B, Shpitalni M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann – Manuf Technol. 2016;65(1):417–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Keshavarzi Arshadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keshavarzi Arshadi, A., Salem, M. (2022). AI and Immunoinformatics. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_113

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_113

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation