Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors

  • Chapter
  • First Online:
Advanced X-ray Detector Technologies
  • 1301 Accesses

Abstract

Lead-halide perovskites are a class of emerging semiconducting materials for new-generation solid-state radiation detectors (SSRDs). These materials combine properties like high atomic number elements (i.e., lead and halides), excellent mobility-lifetime product, and high defect tolerance, which are highly desirable for efficient solid-state radiation detectors. Notably, large-scale single crystals can be grown from low-temperature, solution-based methods, that can greatly reduce the cost for scalable SSRD fabrications. In this chapter, we introduce this new class of materials for next-generation SSRDs in five aspects, including material structure, methods to grow single crystals, physical properties, current status on perovskite SSRD development, and the future development of perovskite SSRD. First, the chapter will start by introducing the basic crystal structure of three-dimensional and low-dimensional perovskites and optical spectroscopy and X-ray spectroscopy methods to characterize them. Followed by the introduction, the next section will discuss the approaches of growing high-quality single crystals, including low-temperature solution growth and high-temperature vacuum methods. Third, physical properties, such as electronic transport properties, carrier lifetime, and defect density will be summarized for each perovskite structure. In the same section, we will also discuss the impact of the surface, including do** density and trap states in the perovskite single crystals. Next, current progress on perovskite-based detectors will be thoroughly reviewed. We will review the current status of the development of single-crystal detectors made from 3D and 2D perovskite crystals and polycrystalline thin films. In addition, perovskite scintillators coupled to photodetectors will be briefly introduced in this section. In the final section, we will lay out the current issues in the perovskite detector technologies that remain to be addressed and discuss potential strategies to improve the detectors’ performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X. Y., & **, S. (2019). Nature Reviews Materials, 4, 169.

    Article  Google Scholar 

  2. Tennyson, E. M., Doherty, T. A. S., & Stranks, S. D. (2019). Nature Reviews Materials, 4, 573.

    Article  Google Scholar 

  3. Wei, H., & Huang, J. (2019). Nature Communications, 10, 1066.

    Article  Google Scholar 

  4. Leijtens, T., Bush, K. A., Prasanna, R., & McGehee, M. D. (2018). Nature Energy, 3, 828.

    Article  Google Scholar 

  5. Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F. A. M., & Zhu, K. (2018). Nature Reviews Materials, 3, 18017.

    Article  Google Scholar 

  6. Chen, Y., et al. (2020). Nature, 577, 209.

    Article  Google Scholar 

  7. Hou, Y., et al. (2020). Science, 367, 1135.

    Article  Google Scholar 

  8. Kim, D., et al. (2020). Science, 368, 155.

    Article  Google Scholar 

  9. Lei, Y., et al. (2020). Nature, 583, 790.

    Article  Google Scholar 

  10. Xu, J., et al. (2020). Science, 367, 1097.

    Article  Google Scholar 

  11. Zhao, X., & Tan, Z.-K. (2020). Nature Photonics, 14, 215.

    Article  Google Scholar 

  12. Rose, G. (1839). Annalen der Physik, 124, 551.

    Article  Google Scholar 

  13. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Science, 338, 643.

    Article  Google Scholar 

  14. Goldschmidt, V. M. (1926). Naturwissenschaften, 14, 477.

    Article  Google Scholar 

  15. Kieslich, G., Sun, S., & Cheetham, A. K. (2015). Chemical Science, 6, 3430.

    Article  Google Scholar 

  16. Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J. J., & Zhu, K. (2016). Chemistry of Materials, 28, 284.

    Article  Google Scholar 

  17. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D., & Karunadasa, H. I. (2014). Angewandte Chemie International Edition, 53, 11232.

    Article  Google Scholar 

  18. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T., & Kanatzidis, M. G. (2015). Journal of the American Chemical Society, 137, 7843.

    Article  Google Scholar 

  19. Tsai, H., et al. (2016). Nature, 536, 312.

    Article  Google Scholar 

  20. Soe, C. M. M., et al. (2019). Proceedings of the National Academy of Sciences, 116, 58.

    Article  Google Scholar 

  21. Ramos-TerrĂłn, S., Jodlowski, A. D., Verdugo-Escamilla, C., Camacho, L., & de Miguel, G. (2020). Chemistry of Materials, 32, 4024.

    Article  Google Scholar 

  22. Mao, L., Ke, W., Pedesseau, L., Wu, Y., Katan, C., Even, J., Wasielewski, M. R., Stoumpos, C. C., & Kanatzidis, M. G. (2018). Journal of the American Chemical Society, 140, 3775.

    Article  Google Scholar 

  23. Ke, W., Mao, L., Stoumpos, C. C., Hoffman, J., Spanopoulos, I., Mohite, A. D., & Kanatzidis, M. G. (2019). Advanced Energy Materials, 9, 1803384.

    Article  Google Scholar 

  24. Soe, C. M. M., et al. (2017). Journal of the American Chemical Society, 139, 16297.

    Article  Google Scholar 

  25. Mao, L., Stoumpos, C. C., & Kanatzidis, M. G. (2019). Journal of the American Chemical Society, 141, 1171.

    Article  Google Scholar 

  26. Dou, L., et al. (2015). Science, 349, 1518.

    Article  Google Scholar 

  27. Ning, Z., et al. (2015). Nature, 523, 324.

    Article  Google Scholar 

  28. Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., & Kovalenko, M. V. (2015). Nano Letters, 15, 3692.

    Article  Google Scholar 

  29. Li, L., et al. (2015). Nature Nanotechnology, 10, 608.

    Article  Google Scholar 

  30. Fedorovskiy, A. E., Drigo, N. A., & Nazeeruddin, M. K. (2020). Small Methods, 4, 1900426.

    Article  Google Scholar 

  31. Maculan, G., et al. (2015). The Journal of Physical Chemistry Letters, 6, 3781.

    Article  Google Scholar 

  32. Saidaminov, M. I., et al. (2015). Nature Communications, 6, 7586.

    Article  Google Scholar 

  33. Shi, D., et al. (2015). Science, 347, 519.

    Article  Google Scholar 

  34. Liu, Y., Zhang, Y., Yang, Z., Yang, D., Ren, X., Pang, L., & Liu, S. (2016). Advanced Materials, 28, 9204.

    Article  Google Scholar 

  35. Nie, W., et al. (2015). Science, 347, 522.

    Article  Google Scholar 

  36. Tsai, H., Nie, W., Cheruku, P., Mack, N. H., Xu, P., Gupta, G., Mohite, A. D., & Wang, H.-L. (2015). Chemistry of Materials, 27, 5570.

    Article  Google Scholar 

  37. Nie, W., et al. (2016). Nature Communications, 7, 11574.

    Article  Google Scholar 

  38. Tsai, H., Nie, W., Lin, Y.-H., Blancon, J. C., Tretiak, S., Even, J., Gupta, G., Ajayan, P. M., & Mohite, A. D. (2017). Advanced Energy Materials, 7, 1602159.

    Article  Google Scholar 

  39. Nie, W., et al. (2018). Advanced Materials, 30, 1703879.

    Article  Google Scholar 

  40. Tsai, H., et al. (2018). Advanced Materials, 30, 1704217.

    Article  Google Scholar 

  41. Tsai, H., Liu, C., Kinigstein, E., Li, M., Tretiak, S., Cotlet, M., Ma, X., Zhang, X., & Nie, W. (2020). Advanced Science, 7, 1903202.

    Article  Google Scholar 

  42. Tsai, H., Liu, F., Shrestha, S., Fernando, K., Tretiak, S., Scott, B., Vo, D. T., Strzalka, J., & Nie, W. (2020). Science Advances, 6, eaay0815.

    Article  Google Scholar 

  43. Tsai, H., et al. (2018). Nature Communications, 9, 2130.

    Article  Google Scholar 

  44. Schlipf, J., & MĂĽller-Buschbaum, P. (2017). Advanced Energy Materials, 7, 1700131.

    Article  Google Scholar 

  45. Chen, A. Z., Shiu, M., Ma, J. H., Alpert, M. R., Zhang, D., Foley, B. J., Smilgies, D.-M., Lee, S.-H., & Choi, J. J. (2018). Nature Communications, 9, 1336.

    Article  Google Scholar 

  46. Liu, Y., et al. (2019). Materials Today, 22, 67.

    Article  Google Scholar 

  47. Zhang, Y., et al. (2020). Nature Communications, 11, 2304.

    Article  Google Scholar 

  48. Yakunin, S., et al. (2015). Nature Photonics, 9, 444.

    Article  Google Scholar 

  49. Wei, H., et al. (2016). Nature Photonics, 10, 333.

    Article  Google Scholar 

  50. Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Savenije, T. J., Cao, L., & Huang, J. (2017). Nature Materials, 16, 826.

    Article  Google Scholar 

  51. He, Y., et al. (2018). ACS Photonics, 5, 4132.

    Article  Google Scholar 

  52. Tisdale, J. T., et al. (2018). CrystEngComm, 20, 7818.

    Article  Google Scholar 

  53. Tisdale, J. T., Yoho, M., Tsai, H., Shrestha, S., Fernando, K., Baldwin, J. K., Tretiak, S., Vo, D., & Nie, W. (2020). Advanced Optical Materials, 8, 2000233.

    Article  Google Scholar 

  54. Su, C.-H., & Lehoczky, S. L. (2008). NASA/Marshall Space Flight Center. Huntsville.

    Google Scholar 

  55. Liu, Y., et al. (2015). Advanced Materials, 27, 5176.

    Article  Google Scholar 

  56. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., & Huang, J. (2015). Science, 347, 967.

    Article  Google Scholar 

  57. Dang, Y., Zhou, Y., Liu, X., Ju, D., **a, S., **a, H., & Tao, X. (2016). Angewandte Chemie International Edition, 55, 3447.

    Article  Google Scholar 

  58. Konstantakou, M., Perganti, D., Falaras, P., & Stergiopoulos, T. (2017). Crystals, 7, 291.

    Article  Google Scholar 

  59. He, Y., et al. (2018). Nature Communications, 9, 1609.

    Article  Google Scholar 

  60. Su, J., Chen, D. P., & Lin, C. T. (2015). Journal of Crystal Growth, 422, 75.

    Article  Google Scholar 

  61. Dang, Y., Ju, D., Wang, L., & Tao, X. (2016). CrystEngComm, 18.

    Google Scholar 

  62. Tisdale, J. T. (2018). PhD dissertation, University of Tennessee.

    Google Scholar 

  63. Whitfield, P. S., Herron, N., Guise, W. E., Page, K., Cheng, Y. Q., Milas, I., & Crawford, M. K. (2016). Scientific Reports, 6, 35685.

    Article  Google Scholar 

  64. Alkauskas, A., McCluskey, M. D., & V, C. G. (2016). d. Walle. Journal of Applied Physics, 119, 181101.

    Article  Google Scholar 

  65. Pospisil, J., Zmeskal, O., Nespurek, S., Krajcovic, J., Weiter, M., & Kovalenko, A. (2019). Scientific Reports, 9, 3332.

    Article  Google Scholar 

  66. Musiienko, A., et al. (2019). Energy & Environmental Science, 12, 1413.

    Article  Google Scholar 

  67. Pan, W., et al. (2017). Nature Photonics, 11, 726.

    Article  Google Scholar 

  68. Shrestha, S., et al. (2017). Nature Photonics, 11, 436.

    Article  Google Scholar 

  69. Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M., & De Angelis, F. (2013). The Journal of Physical Chemistry C, 117, 13902.

    Article  Google Scholar 

  70. Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., & Miura, N. (2003). Solid State Communications, 127, 619.

    Article  Google Scholar 

  71. Even, J., Pedesseau, L., Jancu, J.-M., & Katan, C. (2013). The Journal of Physical Chemistry Letters, 4, 2999.

    Article  Google Scholar 

  72. Whalley, L. D., Frost, J. M., Jung, Y. K., & Walsh, A. (2017). The Journal of Chemical Physics, 146, 220901.

    Article  Google Scholar 

  73. Yin, W.-J., Shi, T., & Yan, Y. (2015). The Journal of Physical Chemistry C, 119, 5253.

    Article  Google Scholar 

  74. Brivio, F., Butler, K. T., Walsh, A., & van Schilfgaarde, M. (2014). Physical Review B, 89.

    Google Scholar 

  75. Caputo, M., et al. (2019). Scientific Reports, 9, 15159.

    Article  Google Scholar 

  76. Rybin, N., et al. (2020). Chemistry of Materials.

    Google Scholar 

  77. Colella, S., et al. (2013). Chemistry of Materials, 25, 4613.

    Article  Google Scholar 

  78. Even, J., Pedesseau, L., & Katan, C. (2014). The Journal of Physical Chemistry C, 118, 11566.

    Article  Google Scholar 

  79. Yin, W. J., Shi, T., & Yan, Y. (2014). Advanced Materials, 26, 4653.

    Article  Google Scholar 

  80. Giorgi, G., Fujisawa, J., Segawa, H., & Yamashita, K. (2013). Journal of Physical Chemistry Letters, 4, 4213.

    Article  Google Scholar 

  81. Umari, P., Mosconi, E., & De Angelis, F. (2014). Scientific Reports, 4, 4467.

    Article  Google Scholar 

  82. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J. T.-W., Stranks, S. D., Snaith, H. J., & Nicholas, R. J. (2015). Nature Physics, 11, 582.

    Article  Google Scholar 

  83. Herz, L. M. (2017). ACS Energy Letters, 2, 1539.

    Article  Google Scholar 

  84. Watanabe, T. T. S. (2001). IEEE Transactions on Nuclear Science, 48, 950.

    Article  Google Scholar 

  85. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., & Snaith, H. J. (2013). Science, 342, 341.

    Article  Google Scholar 

  86. Zheng, F., Tan, L. Z., Liu, S., & Rappe, A. M. (2015). Nano Letters, 15, 7794.

    Article  Google Scholar 

  87. Stoumpos, C. C., et al. (2013). Crystal Growth & Design, 13, 2722.

    Article  Google Scholar 

  88. Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L., & Mora-Sero, I. (2014). Journal of Physical Chemistry Letters, 5, 1628.

    Article  Google Scholar 

  89. De Wolf, S., Holovsky, J., Moon, S. J., Loper, P., Niesen, B., Ledinsky, M., Haug, F. J., Yum, J. H., & Ballif, C. (2014). Journal of Physical Chemistry Letters, 5, 1035.

    Article  Google Scholar 

  90. Samiee, M., et al. (2014). Applied Physics Letters, 105, 153502.

    Article  Google Scholar 

  91. Yin, W.-J., Shi, T., & Yan, Y. (2014). Applied Physics Letters, 104, 063903.

    Article  Google Scholar 

  92. Kim, J., Lee, S. H., Lee, J. H., & Hong, K. H. (2014). Journal of Physical Chemistry Letters, 5, 1312.

    Article  Google Scholar 

  93. Lang, F., Shargaieva, O., Brus, V., Neitzert, H. C., Rappich, J., & Nickel, N. H. (2018). Advanced Materials, 30.

    Google Scholar 

  94. Yang, S., Xu, Z., Xue, S., Kandlakunta, P., Cao, L., & Huang, J. (2019). Advanced Materials, 31, e1805547.

    Article  Google Scholar 

  95. Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2014). Journal of Physical Chemistry Letters, 5, 2903.

    Article  Google Scholar 

  96. Quarti, C., De Angelis, F., & Beljonne, D. (2017). Chemistry of Materials, 29, 958.

    Article  Google Scholar 

  97. Yang, Y., Yan, Y., Yang, M., Choi, S., Zhu, K., Luther, J. M., & Beard, M. C. (2015). Nature Communications, 6, 7961.

    Article  Google Scholar 

  98. Selig, O., Sadhanala, A., Muller, C., Lovrincic, R., Chen, Z., Rezus, Y. L., Frost, J. M., Jansen, T. L., & Bakulin, A. A. (2017). Journal of the American Chemical Society, 139, 4068.

    Article  Google Scholar 

  99. Uratani, H., & Yamashita, K. (2017). Journal of Physical Chemistry Letters, 8, 742.

    Article  Google Scholar 

  100. Han, T. H., Tan, S., Xue, J., Meng, L., Lee, J. W., & Yang, Y. (2019). Advanced Materials, 31, e1803515.

    Article  Google Scholar 

  101. Kim, Y. C., Kim, K. H., Son, D.-Y., Jeong, D.-N., Seo, J.-Y., Choi, Y. S., Han, I. T., Lee, S. Y., & Park, N.-G. (2017). Nature, 550, 87.

    Article  Google Scholar 

  102. Saliba, M., et al. (2016). Science, 354, 206.

    Article  Google Scholar 

  103. Wang, Z., Lin, Q., Chmiel, F. P., Sakai, N., Herz, L. M., & Snaith, H. J. (2017). Nature Energy, 2, 17135.

    Article  Google Scholar 

  104. Li, L., Liu, X., Zhang, H., Zhang, B., Jie, W., Sellin, P. J., Hu, C., Zeng, G., & Xu, Y. (2019). ACS Applied Materials & Interfaces, 11, 7522.

    Article  Google Scholar 

  105. Kasap, S. O. (2000). Journal of Physics D: Applied Physics, 33, 2853.

    Article  Google Scholar 

  106. Kasap, S. O., Zahangir Kabir, M., & Rowlands, J. A. (2006). Current Applied Physics, 6, 288.

    Article  Google Scholar 

  107. George, Z., et al. (2003). In Proceedings of SPIE.

    Google Scholar 

  108. Wei, W., et al. (2017). Nature Photonics, 11, 315.

    Article  Google Scholar 

  109. Szeles, C., Cameron, S. E., Soldner, S. A., Ndap, J.-O., & Reed, M. D. (2004). Journal of Electronic Materials, 33, 742.

    Article  Google Scholar 

  110. Zhang, F., He, Z., & Seifert, C. E. (2007). IEEE Transactions on Nuclear Science, 54, 843.

    Article  Google Scholar 

  111. Watanabe, S., et al. (2001). In 2001 IEEE nuclear science symposium conference record (Cat. No.01CH37310) (pp. 2434).

    Google Scholar 

  112. Owens, A. (2006). Journal of Synchrotron Radiation, 13, 143.

    Article  Google Scholar 

  113. Hitomi, K., Kikuchi, Y., Shoji, T., & Ishii, K. (2009). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 112.

    Article  Google Scholar 

  114. Hitomi, K., Tada, T., Kim, S., Wu, Y., Tanaka, T., Shoji, T., Yamazaki, H., & Ishii, K. (2011). IEEE Transactions on Nuclear Science, 58, 1987.

    Article  Google Scholar 

  115. Yakunin, S., Dirin, D. N., Shynkarenko, Y., Morad, V., Cherniukh, I., Nazarenko, O., Kreil, D., Nauser, T., & Kovalenko, M. V. (2016). Nature Photonics, 10, 585.

    Article  Google Scholar 

  116. Liu, F., et al. (2020). Materials Today.

    Google Scholar 

  117. Li, Y., & Chueh, W. C. (2018). Annual Review of Materials Research, 48, 137.

    Article  Google Scholar 

  118. Birowosuto, M. D., Cortecchia, D., Drozdowski, W., Brylew, K., Lachmanski, W., Bruno, A., & Soci, C. (2016). Scientific Reports, 6, 37254.

    Article  Google Scholar 

  119. Mykhaylyk, V. B., Kraus, H., & Saliba, M. (2019). Materials Horizons, 6, 1740.

    Article  Google Scholar 

  120. Chen, Q., et al. (2018). Nature, 561, 88.

    Article  Google Scholar 

  121. Hitomi, K., Kikuchi, Y., Shoji, T., & Ishii, K. (2009). IEEE Transactions on Nuclear Science, 56, 1859.

    Article  Google Scholar 

  122. Li, C., Tscheuschner, S., Paulus, F., Hopkinson, P. E., Kießling, J., Köhler, A., Vaynzof, Y., & Huettner, S. (2016). Advanced Materials, 28, 2446.

    Article  Google Scholar 

  123. **ng, J., Wang, Q., Dong, Q., Yuan, Y., Fang, Y., & Huang, J. (2016). Physical Chemistry Chemical Physics, 18, 30484.

    Article  Google Scholar 

  124. Cho, Y., et al. (2018). Advanced Energy Materials, 8, 1703392.

    Article  Google Scholar 

  125. Chen, B., Rudd, P. N., Yang, S., Yuan, Y., & Huang, J. (2019). Chemical Society Reviews, 48, 3842.

    Article  Google Scholar 

  126. Zhou, Y., et al. (2020). Chemistry of Materials, 32, 5104.

    Article  Google Scholar 

  127. Abdi-Jalebi, M., et al. (2018). Nature, 555, 497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyi Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsai, H., Tisdale, J., Shrestha, S., Liu, F., Nie, W. (2022). Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors. In: Iniewski, K.(. (eds) Advanced X-ray Detector Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-64279-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64279-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64278-5

  • Online ISBN: 978-3-030-64279-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation