Bioactive Phytochemicals from Chia Seed (Salvia hispanica) Oil Processing By-Products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

Chia (Salvia hispanica L.) seeds are rich in oil (29–39%) and protein (18–25%). In addition, they contain polyunsaturated fatty acids, tocopherols, phytosterols, and phenolic compounds. From an agricultural perspective, this crop grows in more than 30 countries, and its yield can reach >3 tons/ha in native areas (Mexico and Central and South America). Chia is mainly cultivated for its oil. This chapter presents the processes applied for chia oil extraction and chia oil’s composition and attributes. The food and non-food applications of chia oil processing by-products are also reviewed. Applications include functional foods, materials, and bioenergy applications. Finally, some research avenues for future work are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ACE:

Angiotensin-converting enzyme

DNFB:

2,4-dinitrofluorobenzene

DPPH:

2,2-diphenyl-1-picrylhydrazyl

GA:

Gallic acid

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A reductase

HPLC:

High-performance liquid chromatography

IC50:

Half-maximal inhibitory concentration

ICP-MS:

Inductively coupled plasma-mass spectrometry

IL:

Interleukin

kDa:

Kilo Daltons

PUFA:

Polyunsaturated fatty acids

TNF:

Tumor necrosis factor

TPA:

12-O-tetradecanoylphorbol-13-acetate

USD:

US dollar

References

  1. Carović-Stanko K, Petek M, Grdiša M, Pintar J, Bedeković D, Herak Ćustić M, Satovic Z (2016) Medicinal plants of the family Lamiaceae as functional foods – a review. Czech J Food Sci 34(5):377–390

    Google Scholar 

  2. **ngú López A, González Huerta A, de la Cruz Torrez E, Sangerman-Jarquín DM, Orozco de Rosas G, Rubí Arriaga M (2017) Chia (Salvia hispanica L.) current situation and future trends. Rev Mex Cienc Agríc 8(7):1619–1631

    Google Scholar 

  3. Sosa-Baldivia A, Ruiz-Ibarra G, de la Torres RRR, Lopez RR, Lopez AM (2018) The chia (Salvia hispanica): past, present and future of an ancient Mexican crop. Aust J Crop Sci 12(10):1626–1632

    Google Scholar 

  4. Hernández-Gómez JA, Miranda-Colín S, Peña-Lomelí A (2008) Cruzamiento natural de chia (Salvia hispanica L.). Rev Cha**o Ser Hortic 14(3):331–337

    Google Scholar 

  5. Cahill JP (2003) Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ Bot 57:604–618

    Google Scholar 

  6. Cassiday L (2017) Chia: superfood or superfat. INFORM 28(1):6–13

    Google Scholar 

  7. Bhardwaj HL (2021) Preliminary observation about forage potential of chia. J Agric Sci 13(7):32–36

    Google Scholar 

  8. Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž (2019) Chia seeds (Salvia hispanica L.): an overview – phytochemical profile, isolation methods, and application. Molecules 25(1):11

    PubMed Central  Google Scholar 

  9. Jamshidi AM, Amato M, Ahmadi A, Bochicchio R, Rossi R (2019) Chia (Salvia hispanica L.) as a novel forage and feed source: a review. Ital J Agron 14(1):1–18

    Google Scholar 

  10. Orona-Tamayo D, Valverde EM, Paredes LO (2016) Chapter 17. Chia – the new golden seed for the 21st century: nutraceutical properties and technological uses. In: Nadathur S, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Elsevier, Berkeley, pp 265–281

    Google Scholar 

  11. USDA National Nutrient Database for Standard Reference, Release 28 (2018) Available online: http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 15 June 2019

  12. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A (2019) The chemical composition and nutritional value of chia seeds – current state of knowledge. Nutrients 11(6):1242

    PubMed Central  Google Scholar 

  13. Dąbrowski G, Konopka I, Czaplicki S (2018) Variation in oil quality and content of low molecular lipophilic compounds in chia seed oils. Int J Food Prop 21(1):2016–2029

    Google Scholar 

  14. Özcan MM, Al-Juhaimi FY, Ahmed IAM, Osman MA, Gassem MA (2018) Effect of soxhlet and cold press extractions on the physico-chemical characteristics of roasted and non-roasted chia seed oils. J Food Meas Charact 13(1):648–655

    Google Scholar 

  15. Fernandes SS, Tonato D, Mazutti MA, de Abreu BR, da Costa Cabrera D, D’Oca CDRM, Prentice-Hernández C, Salas-Mellado MDLM (2019) Yield and quality of chia oil extracted via different methods. J Food Eng 262:200–208

    CAS  Google Scholar 

  16. Ciau-Solís N, Rosado-Rubio G, Segura-Campos MR, Betancur-Ancona D, Chel-Guerrero L (2014) Chemical and functional properties of chia seed (Salvia hispanica L.) gum. Int J Food Sci 2014:1–5

    Google Scholar 

  17. Knez Hrnčič M, Cör D, Knez Ž (2018) Subcritical extraction of oil from black and white chia seeds with n-propane and comparison with conventional techniques. J Supercrit Fluids 140:182–187

    Google Scholar 

  18. de Mello BTF, dos Santos Garcia VA, da Silva C (2017) Ultrasound-assisted extraction of oil from chia (Salvia hispanica L.) seeds: optimization extraction and fatty acid profile. J Food Process Eng 40:1–8

    Google Scholar 

  19. Friedman M, Levin CE, Henika PR (2017) Addition of phytochemical-rich plant extracts mitigate the antimicrobial activity of essential oil/wine mixtures against Escherichia coli O157:H7 but not against Salmonella enterica. Food Control 73:562–565

    CAS  Google Scholar 

  20. Coelho MS, de las Mercedes Salas-Mellado M (2018) How extraction method affects the physicochemical and functional properties of chia proteins. LWT Food Sci Technol 96:26–33

    CAS  Google Scholar 

  21. Musa Özcan M, Al-Juhaimi FY, Mohamed Ahmed IA, Osman MA, Gassem MA (2019) Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem 278:190–196

    PubMed  Google Scholar 

  22. Shen Y, Zheng L, ** J, Li X, Fu J, Wang M, Guan Y, Song X (2018) Phytochemical and biological characteristics of Mexican chia seed oil. Molecules 23(12):3219

    PubMed Central  Google Scholar 

  23. Dąbrowski G, Konopka I, Czaplicki S, Tańska M (2016) Composition and oxidative stability of oil from Salvia hispanica L. seeds in relation to extraction method. Eur J Lipid Sci Technol 119(5):1600209

    Google Scholar 

  24. Martínez ML, Marín MA, Salgado Faller CM, Revol J, Penci MC, Ribotta PD (2012) Chia (Salvia hispanica L.) oil extraction: study of processing parameters. LWT Food Sci Technol 47(1):78–82

    Google Scholar 

  25. Bodoira RM, Penci MC, Ribotta PD, Martínez ML (2017) Chia (Salvia hispanica L.) oil stability: study of the effect of natural antioxidants. LWT Food Sci Technol 75:107–113

    CAS  Google Scholar 

  26. Dąbrowski G, Konopka I, Czaplicki S (2018) Supercritical CO2 extraction in chia oils production: impact of process duration and co-solvent addition. Food Sci Biotechnol 27:677–686

    PubMed  PubMed Central  Google Scholar 

  27. Uribe JAR, Perez JIN, Kauil HC, Rubio GR, Alcocer CG (2011) Extraction of oil from chia seeds with supercritical CO2. J Supercrit Fluids 56(2):174–178

    CAS  Google Scholar 

  28. Ixtaina VY, Vega A, Nolasco SM, Tomás MC, Gimeno M, Bárzana E, Tecante A (2010) Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): characterization and process optimization. J Supercrit Fluids 55(1):192–199

    CAS  Google Scholar 

  29. Álvarez-Chávez LM, Valdivia-López MDLA, Aburto-Juárez MDL, Tecante A (2008) Chemical characterization of the lipid fraction of Mexican chia seed (Salvia hispanica L.). Int J Food Prop 11:687–697

    Google Scholar 

  30. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innov Food Sci Emerg Technol 9(2):161–169

    CAS  Google Scholar 

  31. Coates W, Ayerza R (1996). Potencial de produção de chia no noroeste da Argentina. Culturas e produtos industriais 5(3):229–233. https://doi.org/10.1016/0926-6690(96)89454-4

  32. Bordón MG, Meriles SP, Ribotta PD, Martinez ML (2019) Enhancement of composition and oxidative stability of chia (Salvia hispanica L.) seed oil by blending with specialty oils. J Food Sci 84(5):1035–1044

    PubMed  Google Scholar 

  33. Campos BE, Dias Ruivo T, da Silva Scapim MR, Madrona GS, Bergamasco RC (2016) Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT Food Sci Technol 65:874–883

    CAS  Google Scholar 

  34. Beare-Rogers J, Dieffenbacher A, Holm JV (2001) Lexicon of lipid nutrition. Pure Appl Chem 73(4):685–744

    CAS  Google Scholar 

  35. Guindani C, Podestá R, Block JM, Rossi MJ, Mezzomo N, Ferreira SRS (2016) Valorization of chia (Salvia hispanica) seed cake by means of supercritical fluid extraction. J Supercrit Fluids 112:67–75

    CAS  Google Scholar 

  36. Phillips KM, Ruggio DM, Toivo JI, Swank MA, Simpkins AH (2002) Free and esterified sterol composition of edible oils and fats. J Food Compos Anal 15:123–142

    CAS  Google Scholar 

  37. Abad A, Shahidi F (2020) Compositional characteristics and oxidative stability of chia seed oil (Salvia hispanica L). Food Prod Process Nutr 2:9

    Google Scholar 

  38. Ixtaina VY, Martínez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK, Nolasco SM, Tomás MC (2011) Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 24:166–174

    CAS  Google Scholar 

  39. Ciftci ON, Przybylski R, Rudzińska M (2012) Lipid components of flax, perilla, and chia seeds. Eur J Lipid Sci Technol 114:794–800

    CAS  Google Scholar 

  40. Amato M, Caruso MC, Guzzo F, Galgano F, Commisso M, Bochicchio R, Labella R, Favati F (2015) Nutritional quality of seeds and leaf metabolites of chia (Salvia hispanica L.) from southern Italy. Eur Food Res Technol 241:615–625

    CAS  Google Scholar 

  41. Zanqui AB, De Morais DR, Da Silva CM, Santos JM, Chiavelli LUR, Bittencourt PRS, Eberlin MN, Visentainer JV, Cardozo-Filho L, Matsushita M (2015) Subcritical extraction of Salvia hispanica L. oil with n-propane: composition, purity and oxidation stability as compared to the oils obtained by conventional solvent extraction methods. J Braz Chem Soc 26:282–289

    CAS  Google Scholar 

  42. Mohd Ali N, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG (2012) The promising future of chia, Salvia hispanica L. J Biomed Biotechnol 2012:171956

    PubMed  PubMed Central  Google Scholar 

  43. de Paiva LB, Goldbeck R, dos Santos WD, Squina FM (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49:395–411

    Google Scholar 

  44. Marineli RDS, Moraes ÉA, Lenquiste SA, Godoy AT, Eberlin MN, Maróstica MR (2014) Chemical characterization and antioxidant potential of chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci Technol 59:1304–1310

    CAS  Google Scholar 

  45. Martínez-Cruz O, Paredes-López O (2014) Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high-performance liquid chromatography. J Chromatogr A 1346:43–48

    PubMed  Google Scholar 

  46. Capitani MI, Spotorno V, Nolasco SM, Tomás MC (2012) Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT Food Sci Technol 45(1):94–102

    CAS  Google Scholar 

  47. Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR (2021) Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct 12:14–29

    PubMed  CAS  Google Scholar 

  48. Takó M, Kerekes EB, Zambrano C, Kotogán A, Papp T, Krisch J, Vágvölgyi C (2021) Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct 12:14–29

    Google Scholar 

  49. Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248(3):171–183

    PubMed  CAS  Google Scholar 

  50. do Carmo MAV, Granato D, Azevedo L (2021) Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: a cell-based point of view. Adv Food Nutr Res 98:253–280

    PubMed  Google Scholar 

  51. Delfanian M, Sahari MA (2020) Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 137:109555

    PubMed  CAS  Google Scholar 

  52. Ullah R, Nadeem M, Khalique A, Imram M, Mehmood S, Javid A, Hussain J (2016) Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): a review. J Food Sci Technol 53:1750–1758

    PubMed  CAS  Google Scholar 

  53. Alcântara MA, de Lima Brito Polari I, de Albuquerque Meireles BRL, Alcântara de Lima AE, da Silva Junior JC, de Andrade VE, dos Santos NA, de Magalhães Cordeiro AMT (2019) Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem 25:489–496

    Google Scholar 

  54. Corona-Jiménez E, Martínez-Navarrete N, Ruiz-Espinosa H, Carranza-Concha J (2016) Ultrasound-assisted extraction of phenolics compounds from chia (Salvia hispanica L.) seeds and their antioxidant activity. Agrociencia 50(4):403–412

    Google Scholar 

  55. Reyes-Caudillo E, Tecante A, Valdivia-López MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107(2):656–663

    CAS  Google Scholar 

  56. Oliveira-Alves SC, Vendramini-Costa DB, Betim Cazarin CB, Maróstica Júnior MR, Borges Ferreira JP, Silva AB, Prado MA, Bronze MR (2017) Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem 232:295–305

    PubMed  CAS  Google Scholar 

  57. Pizarro ML, Becerra M, Sayago A, Beltrán M, Beltrán R (2013) Comparison of different extraction methods to determine phenolic compounds in virgin olive oil. Food Anal Methods 6:123–132

    Google Scholar 

  58. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I. – the quantitative analysis of phenolic constituents. J Sci Food Agric 10(1):63–68

    CAS  Google Scholar 

  59. Shahidi F, De Camargo AC (2016) Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci 17(10):1745

    PubMed Central  Google Scholar 

  60. Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13(3):129–142

    PubMed  CAS  Google Scholar 

  61. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1502(1):139–144

    CAS  Google Scholar 

  62. Kinnula VL, Crapo JD (2004) Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 36(6):718–744

    PubMed  CAS  Google Scholar 

  63. Dhaval A, Yadav N, Purwar S (2016) Potential applications of food derived bioactive peptides in management of health. Int J Pept Res Ther 22(3):377–398

    CAS  Google Scholar 

  64. Aguilar-Toalá JE, Liceaga AM (2020) Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes. Amino Acids 52:1149–1159

    PubMed  Google Scholar 

  65. Aguilar-Toalá JE, Deering AJ, Liceaga AM (2020) New insights into the antimicrobial properties of hydrolysates and peptide fractions derived from chia seed (Salvia hispanica L.). Probiotics Antimicrob Proteins 12:1571–1581

    PubMed  Google Scholar 

  66. Cotabarren J, Rosso AM, Tellechea M, García-Pardo J, Rivera JL, Obregón WD, Parisi MG (2019) Adding value to the chia (Salvia hispanica L.) expeller: production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chem 274:848–856

    PubMed  CAS  Google Scholar 

  67. Martínez-Leo EE, Segura-Campos MR (2020) Neuroprotective effect of peptide fractions from chia (Salvia hispanica) on H2O2-induced oxidative stress-mediated neuronal damage on N1E-115 cell line. Neurochem Res 45:2278–2285

    PubMed  Google Scholar 

  68. Segura-Campos MR, Peralta González F, Guerrero LC, Betancur Ancona D (2013) Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. Int J Food Sci 2013:158482

    PubMed  PubMed Central  Google Scholar 

  69. Silveira Coelho M, de Araujo Aquino S, Machado Latorres J, de las Mercedes Salas-Mellado M (2019) In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocoll 91:19–25

    CAS  Google Scholar 

  70. Urbizo-Reyes U, San Martin-González MF, Garcia-Bravo J, López Malo Vigil A, Liceaga AM (2019) Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave assisted hydrolysis. Food Hydrocoll 97:105187

    CAS  Google Scholar 

  71. Moreau RA, Nyström L, Whitaker BD, Winkler-Moser JK, Baer DJ, Gebauer SK, Hicks KB (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61

    PubMed  CAS  Google Scholar 

  72. Torres-León C, Ramírez-Guzman N, Londoño-Hernandez L, Martinez-Medina GA, Díaz-Herrera R, Navarro-Macias V, Alvarez-Perez OB, Picazo B, Villareal M, Ascacio J, Aguilar CN (2018) Food waste and byproducts: an opportunity to minimize malnutrition and hunger in develo** countries. Front Sustain Food Syst 2:52

    Google Scholar 

  73. Iriondo-DeHond M, Miguel E, Del Castillo MD (2018) Food by products as sustainable ingredients for innovative and healthy dairy foods. Nutrients 10(10):1358

    PubMed Central  Google Scholar 

  74. Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M (2019) Agro-food by products as a new source of natural food additives. Molecules 24(6):1056

    PubMed Central  CAS  Google Scholar 

  75. Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52:2522–2529

    PubMed  CAS  Google Scholar 

  76. Carocho M, Morales P, Ferreira IC (2015) Natural food additives: quo vadis? Trends Food Sci Technol 45:284–295. https://doi.org/10.1016/j.tifs.2015.06.007

    Article  CAS  Google Scholar 

  77. Chiang JH, Ong DSM, Ng FSK, Hua XY, Tay WLW, Henry CJ (2021) Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods. Trends Food Sci Technol 115:105–116

    CAS  Google Scholar 

  78. Nayani S, Rao DS (2020) Extraction of mucilage from chia seeds and its application as fat replacer in biscuits. Int J Eng Tech Res 9(7):922–927

    Google Scholar 

  79. Capitani MI, Nolasco SM, Tomás MC (2016) Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocoll 61:537–546

    CAS  Google Scholar 

  80. Brütsch L, Stringer FJ, Kuster S, Windhab E, Fischer P (2019) Chia seed mucilage – a vegan thickener: isolation, tailoring viscoelasticity and rehydration. Food Funct 10(8):4854–4860

    PubMed  Google Scholar 

  81. Chan-Zapata I, Arana-Argáez VE, Torres-Romero JC, Segura-Campos MR (2019) Anti-inflammatory effects of the protein hydrolysate and peptide fractions isolated from Salvia hispanica L. seeds. Food Agric Immunol 30(1):786–803

    CAS  Google Scholar 

  82. Quintal-Bojórquez NDC, Cocom LMC, Hernández-Álvarez AJ, Segura-Campos MR (2021) Anticancer activity of protein fractions from chia (Salvia hispanica L.). J Food Sci 86:2861–2871

    PubMed  Google Scholar 

  83. Azeem W, Nadeem M, Ahmad S (2015) Stabilization of winterized cottonseed oil with chia (Salvia hispanica I.) seed extract at ambient temperature. J Food Sci Technol 52(11):7191–7199

    CAS  Google Scholar 

  84. Malathi AN, Santhosh KS, Nidoni U (2014) Recent trends of biodegradable polymer: biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Curr Trends Technol Sci 3(2):73–79

    Google Scholar 

  85. Capitani MI, Matus-Basto A, Ruiz-Ruiz JC, Santiago-García JL, Betancur-Ancona DA, Nolasco SM, Tomás MC, Segura-Campos MR (2016) Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food Bioprocess Technol 9(8):1276–1286

    CAS  Google Scholar 

  86. Luo M, Cao Y, Wang W, Chen X, Cai J, Wang L, **ao J (2018) Sustained-release antimicrobial gelatin film: effect of chia mucilage on physicochemical and antimicrobial properties. Food Hydrocoll 87:783–791

    Google Scholar 

  87. Ateş F, Miskolczi N, Saricaoğlu B (2015) Pressurized pyrolysis of dried distillers grains with solubles and canola seed press cake in a fixed-bed reactor. Bioresour Technol 177:149–158

    PubMed  Google Scholar 

  88. Azargohar R, Nanda S, Rao BVSK, Dalai AK (2013) Slow pyrolysis of deoiled canola meal: product yields and characterization. Energy Fuel 27:5268–5279

    CAS  Google Scholar 

  89. David E, Kopač J (2019) Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors. J Anal Appl Pyrolysis 141:104638

    CAS  Google Scholar 

  90. Nowicki L, Siuta D, Markowski M (2020) Pyrolysis of rapeseed oil press cake and steam gasification of solid residues. Energies 13:4472

    CAS  Google Scholar 

  91. Smets K, Roukaerts A, Czech J, Reggers G, Schreurs S, Carleer R, Yperman J (2013) Slow catalytic pyrolysis of rapeseed cake: product yield and characterization of the pyrolysis liquid. Biomass Bioenergy 57:180–190

    CAS  Google Scholar 

  92. Tahir MH, Çakman G, Goldfarb JL, Topcu Y, Naqvi SR, Ceylan S (2019) Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresour Technol 279:67–73

    PubMed  CAS  Google Scholar 

  93. Ucar S, Ozkan AR (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresour Technol 99:8771–8776

    PubMed  CAS  Google Scholar 

  94. Chaudhari ST, Dalai AK, Bakhshi NN (2003) Production of hydrogen and/or syngas (H2 + CO) via steam gasification of biomass-derived chars. Energy Fuel 17:1062–1067

    CAS  Google Scholar 

  95. Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110(2–3):413–421

    CAS  Google Scholar 

  96. Rout PK, Naik MK, Naik SN, Goud VV, Das LM, Dalai AK (2009) Supercritical CO2 fractionation of bio-oil produced from mixed biomass of wheat and wood sawdust. Energy Fuel 23(12):6181–6188

    CAS  Google Scholar 

  97. Antonopoulou G, Stamatelatou K, Lyberatos G (2010) Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: the effect of pretreatment. Chem Eng Trans 20:253–258

    Google Scholar 

  98. Deepanraj B, Senthilkumar N, Ranjitha J (2021) Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energy Sources Part A 43(11):1329–1336

    CAS  Google Scholar 

  99. Kainthola J, Kalamdhad AS, Goud VV (2019) A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 84:81–90

    CAS  Google Scholar 

  100. Grancieri M, Martino HSD, Gonzalez de Mejia E (2019) Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Compr Rev Food Sci Food Saf 18(2):480–499. https://doi.org/10.1111/1541-4337.12423

    Article  PubMed  CAS  Google Scholar 

  101. Muñoz-Tebar N, Molina A, Carmona M, Berruga MI (2021) Use of chia by-products obtained from the extraction of seeds oil for the development of new biodegradable films for the agri-food industry. Foods 10(3):620

    PubMed  PubMed Central  Google Scholar 

  102. Tavares LS, Junqueira LA, de Oliveira Guimarães ÍC, de Resende JV (2018) Cold extraction method of chia seed mucilage (Salvia hispanica L.): effect on yield and rheological behavior. J Food Sci Technol 55(2):457–466

    PubMed  CAS  Google Scholar 

  103. Dick M, Costa TMH, Gomaa A, Subirade M, de Oliveira Rios A, Flôres SH (2015) Edible film production from chia seed mucilage: effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr Polym 130:198–205

    PubMed  CAS  Google Scholar 

  104. Sacco P, Lipari S, Cok M, Colella M, Marsich E, Lopez F, Donati I (2021) Insights into mechanical behavior and biological properties of chia seed mucilage hydrogels. Gels 7(2):47

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Ofosu FK, Daliri EB-M, Elahi F, Chelliah R, Lee B-H, Oh D-H (2020) New insights on the use of polyphenols as natural preservatives and their emerging safety concerns. Front Sustain Food Syst 4:525810

    Google Scholar 

  106. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    PubMed  CAS  Google Scholar 

  107. Global Information Inc (2018) Global peptide therapeutics sales market report 2018. QYResearch, 387893

    Google Scholar 

  108. Quintal-Bojórquez N, Segura-Campos MR (2020) Bioactive peptides as therapeutic adjuvants for cancer. Nutr Cancer 73(8):1309–1321

    PubMed  Google Scholar 

  109. Muttenthaler M, King GF, Adams DJ, Alewood PF (2021) Trends in peptide drug discovery. Nat Rev Drug Discov 20(4):309–325

    PubMed  CAS  Google Scholar 

  110. Wang L, Dong C, Li X, Han W, Su X (2017) Anticancer potential of bioactive peptides from animal sources (review). Oncol Rep 38(2):637–651

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Javier Hernández-Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sánchez-Velázquez, O.A., Mondor, M., Segura-Campos, M.R., del Carmen Quintal-Bojórquez, N., Hernández-Álvarez, A.J. (2022). Bioactive Phytochemicals from Chia Seed (Salvia hispanica) Oil Processing By-Products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation