The Pathophysiology of Myeloma Bone Disease: Bone Remodelling and the Role of Osteoclasts

  • Chapter
  • First Online:
Management of Bone Disease and Kidney Failure in Multiple Myeloma

Abstract

One of the most devastating effects of multiple myeloma is the severe bone disease that affects over 80% of patients during their disease course. In the vast majority, this is irreversible and significantly adds to the already heavy disease burden. Over the last decade, the pathophysiology and complexity of bone destruction in myeloma have become increasingly evident, here we explore the multiple normal physiological pathways and cell types that are disrupted in myeloma and can therefore be implicated in the evolution of bone destruction in this disease. As these pathways become clearer, they open up the possibility of targeted interventions which are explored elsewhere in this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

Abbreviations

ALP:

Alkaline phosphatase

BAFF:

B-cell-activating factor

bALP:

Bone alkaline phosphatase

BM:

Bone marrow

BMD:

Bone mineral density

BMME:

Bone marrow microenvironment

BMP-2:

Bone morphogenetic protein-2

BMSC:

Bone marrow stromal cells

CBFA1:

Core-binding factor Runt domain α subunit 1

CCL3:

Chemokine (C-C motif) ligand 3

DcR3:

Decoy receptor 3

DKK1:

Dickopf-1

FRP:

Frizzled-related proteins

Gfi1:

Growth factor independence 1

HGF:

Hepatocyte growth factor

IL-:

Interleukin-

LRP:

Low-density lipoprotein receptor-related protein

MBD:

Myeloma bone disease

MGUS:

Monoclonal gammopathy of unknown significance

MIP:

Macrophage inflammatory protein

MM:

Multiple myeloma

MMP:

Matrix metalloproteinase

MPC:

Malignant plasma cell

NF κB:

Nuclear factor kappa B

OAFs:

Osteoclast-activating factors

OB:

Osteoblast

OC:

Osteoclast

OIFs:

Osteoblast-inhibiting factors

OP:

Osteoporosis

OPG:

Osteoprotegerin

PTH:

Parathyroid hormone

PTHrP:

Parathyroid hormone-related protein

RANK:

Receptor activator of nuclear factor kappa B

RANKL:

Receptor activator of nuclear factor kappa B ligand

Runx2:

Runt-related transcription factor 2

SDF-1 α:

Stromal cell-derived factor 1 α (also known as CXCL12)

sFRP-:

Secreted frizzled-related protein-

SRE:

Skeletal-related events

TGF-β:

Transforming growth factor-beta

TNF:

Tumour necrosis factor

TRAF6:

TNF receptor-associated factor 6

TRAIL:

TNF-related apoptosis-inducing ligand

VCAM1:

Vascular cell adhesion molecule-1

VLA4:

Very late antigen 4 (also known as α4β1 integrin)

WIF-1:

Wnt inhibitory factor 1

Wnt:

Wingless/Intergrase-1

References

  1. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

    Article  PubMed  Google Scholar 

  2. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.

    Article  CAS  PubMed  Google Scholar 

  3. Melton LJ 3rd, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV. Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res. 2005;20(3):487–93.

    Article  PubMed  Google Scholar 

  4. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110(8):1860–7.

    Article  PubMed  Google Scholar 

  5. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–92.

    Article  CAS  PubMed  Google Scholar 

  7. Feng X, Teitelbaum SL. Osteoclasts: new insights. Bone Res. 2013;1(1):11–26.

    Article  PubMed  Google Scholar 

  8. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens). 2007;6(4):279–94.

    Article  Google Scholar 

  9. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.

    Article  CAS  PubMed  Google Scholar 

  11. Shah KM, Stern MM, Stern AR, Pathak JL, Bravenboer N, Bakker AD. Osteocyte isolation and culture methods. Bonekey Rep. 2016;5:838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone Metab. 2008;5(1):49–56.

    PubMed  PubMed Central  Google Scholar 

  13. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15(4):263–73.

    Article  PubMed  Google Scholar 

  14. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  15. Katz BZ. Adhesion molecules--the lifelines of multiple myeloma cells. Semin Cancer Biol. 2010;20(3):186–95.

    Article  CAS  PubMed  Google Scholar 

  16. Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 2018;8(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schwarzer R, Nickel N, Godau J, Willie BM, Duda GN, Schwarzer R, et al. Notch pathway inhibition controls myeloma bone disease in the murine MOPC315.BM model. Blood Cancer J. 2014;4:e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanderson RD, Yang Y. Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metastasis. 2008;25(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  19. Novack DV, Mbalaviele G. Osteoclasts-key players in skeletal health and disease. Microbiol Spectr. 2016;4(3):1–19.

    Google Scholar 

  20. Bruns I, Cadeddu RP, Brueckmann I, Frobel J, Geyh S, Bust S, et al. Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells. Blood. 2012;120(13):2620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bataille R, Chappard D, Basle MF. Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: a prospective study of 87 bone biopsies. Blood. 1996;87(11):4762–9.

    Article  CAS  PubMed  Google Scholar 

  22. Terpos E, Dimopoulos MA. Interaction between the skeletal and immune systems in cancer: mechanisms and clinical implications. Cancer Immunol Immunother. 2011;60(3):305–17.

    Article  CAS  PubMed  Google Scholar 

  23. Jakob C, Goerke A, Terpos E, Sterz J, Heider U, Kuhnhardt D, et al. Serum levels of total-RANKL in multiple myeloma. Clin Lymphoma Myeloma. 2009;9(6):430–5.

    Article  CAS  PubMed  Google Scholar 

  24. Politou M, Terpos E, Anagnostopoulos A, Szydlo R, Laffan M, Layton M, et al. Role of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin and macrophage protein 1-alpha (MIP-1a) in monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol. 2004;126(5):686–9.

    Article  CAS  PubMed  Google Scholar 

  25. Goranova-Marinova V, Goranov S, Pavlov P, Tzvetkova T. Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical correlations. Haematologica. 2007;92(7):1000–1.

    Article  PubMed  Google Scholar 

  26. Terpos E, Christoulas D, Gavriatopoulou M, Dimopoulos MA. Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl). 2017;26(6):e12761.

    Article  Google Scholar 

  27. Sezer O, Heider U, Jakob C, Eucker J, Possinger K. Human bone marrow myeloma cells express RANKL. J Clin Oncol. 2002;20(1):353–4.

    Article  PubMed  Google Scholar 

  28. Lai FP, Cole-Sinclair M, Cheng WJ, Quinn JM, Gillespie MT, Sentry JW, et al. Myeloma cells can directly contribute to the pool of RANKL in bone bypassing the classic stromal and osteoblast pathway of osteoclast stimulation. Br J Haematol. 2004;126(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  29. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A. 2001;98(20):11581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98(13):3534–40.

    Article  CAS  PubMed  Google Scholar 

  31. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  32. Standal T, Seidel C, Hjertner O, Plesner T, Sanderson RD, Waage A, et al. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood. 2002;100(8):3002–7.

    Article  CAS  PubMed  Google Scholar 

  33. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood. 2002;100(6):2195–202.

    Article  CAS  PubMed  Google Scholar 

  34. Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol. 2003;123(1):106–9.

    Article  CAS  PubMed  Google Scholar 

  35. Palma BD, Guasco D, Pedrazzoni M, Bolzoni M, Accardi F, Costa F, et al. Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: role of chemokine (C-C motif) ligand 20. Leukemia. 2016;30(2):409–16.

    Article  PubMed  Google Scholar 

  36. Choi SJ, Oba T, Callander NS, Jelinek DF, Roodman GD. AML-1A and AML-1B regulation of MIP-1alpha expression in multiple myeloma. Blood. 2003;101(10):3778–83.

    Article  CAS  PubMed  Google Scholar 

  37. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 2001;97(11):3349–53.

    Article  CAS  PubMed  Google Scholar 

  38. Munshi N. Early evidence of anabolic bone activity of BHQ880, a fully human anti-DKK1 neutralizing antibody: results of a phase 2 study in previously untreated patients with smoldering multiple myeloma at risk for progression. Blood. 2012;120(21):331.

    Article  Google Scholar 

  39. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood. 2010;116(18):3554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96(2):671–5.

    Article  CAS  PubMed  Google Scholar 

  41. Dairaghi DJ, Oyajobi BO, Gupta A, McCluskey B, Miao S, Powers JP, et al. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood. 2012;120(7):1449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giuliani N, Lisignoli G, Colla S, Lazzaretti M, Storti P, Mancini C, et al. CC-chemokine ligand 20/macrophage inflammatory protein-3alpha and CC-chemokine receptor 6 are overexpressed in myeloma microenvironment related to osteolytic bone lesions. Cancer Res. 2008;68(16):6840–50.

    Article  CAS  PubMed  Google Scholar 

  43. Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol. 1990;144(11):4226–30.

    Article  CAS  PubMed  Google Scholar 

  44. Kyrstsonis MC, Dedoussis G, Baxevanis C, Stamatelou M, Maniatis A. Serum interleukin-6 (IL-6) and interleukin-4 (IL-4) in patients with multiple myeloma (MM). Br J Haematol. 1996;92(2):420–2.

    Article  CAS  PubMed  Google Scholar 

  45. Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  46. Fulciniti M, Hideshima T, Vermot-Desroches C, Pozzi S, Nanjappa P, Shen Z, et al. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res. 2009;15(23):7144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2004;103(6):2308–15.

    Article  CAS  PubMed  Google Scholar 

  48. Donovan KA, Lacy MQ, Gertz MA, Lust JA. IL-1beta expression in IgM monoclonal gammopathy and its relationship to multiple myeloma. Leukemia. 2002;16(3):382–5.

    Article  CAS  PubMed  Google Scholar 

  49. Lacy MQ, Donovan KA, Heimbach JK, Ahmann GJ, Lust JA. Comparison of interleukin-1 beta expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 1999;93(1):300–5.

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto I, Kawano M, Sone T, Iwato K, Tanaka H, Ishikawa H, et al. Production of interleukin 1 beta, a potent bone resorbing cytokine, by cultured human myeloma cells. Cancer Res. 1989;49(15):4242–6.

    CAS  PubMed  Google Scholar 

  51. Stromme O, Psonka-Antonczyk KM, Stokke BT, Sundan A, Arum CJ, Brede G. Myeloma-derived extracellular vesicles mediate HGF/c-Met signaling in osteoblast-like cells. Exp Cell Res. 2019;383(1):111490.

    Article  PubMed  Google Scholar 

  52. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, et al. Expression of VEGF and its receptors by myeloma cells. Leukemia. 2003;17(10):2025–31.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka Y, Abe M, Hiasa M, Oda A, Amou H, Nakano A, et al. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res. 2007;13(3):816–23.

    Article  CAS  PubMed  Google Scholar 

  54. Bellamy WT. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 2001;28(6):551–9.

    Article  CAS  PubMed  Google Scholar 

  55. Standal T, Hjorth-Hansen H, Rasmussen T, Dahl IM, Lenhoff S, Brenne AT, et al. Osteopontin is an adhesive factor for myeloma cells and is found in increased levels in plasma from patients with multiple myeloma. Haematologica. 2004;89(2):174–82.

    CAS  PubMed  Google Scholar 

  56. Valkovic T, Babarovic E, Lucin K, Stifter S, Aralica M, Pecanic S, et al. Plasma levels of osteopontin and vascular endothelial growth factor in association with clinical features and parameters of tumor burden in patients with multiple myeloma. Biomed Res Int. 2014;2014:513170.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cafforio P, Savonarola A, Stucci S, De Matteo M, Tucci M, Brunetti AE, et al. PTHrP produced by myeloma plasma cells regulates their survival and pro-osteoclast activity for bone disease progression. J Bone Miner Res. 2014;29(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  58. Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 2005;65(5):1700–9.

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Liang HM, Lv YQ, Tang SM, Cheng P. Blockade of SDF-1/CXCR4 reduces adhesion-mediated chemoresistance of multiple myeloma cells via interacting with interleukin-6. J Cell Physiol. 2019;234(11):19702–14.

    Article  CAS  PubMed  Google Scholar 

  60. Colucci S, Brunetti G, Mori G, Oranger A, Centonze M, Mori C, et al. Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients. Leukemia. 2009;23(11):2139–46.

    Article  CAS  PubMed  Google Scholar 

  61. Hemingway F, Taylor R, Knowles HJ, Athanasou NA. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone. 2011;48(4):938–44.

    Article  CAS  PubMed  Google Scholar 

  62. Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006;66(13):6675–82.

    Article  CAS  PubMed  Google Scholar 

  63. Pan J, Sun Y, Zhang N, Li J, Ta F, Wei W, et al. Characteristics of BAFF and APRIL factor expression in multiple myeloma and clinical significance. Oncol Lett. 2017;14(3):2657–62.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One. 2009;4(4):e5275.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Terpos E, Kastritis E, Christoulas D, Gkotzamanidou M, Eleutherakis-Papaiakovou E, Kanellias N, et al. Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann Oncol. 2012;23(10):2681–6.

    Article  CAS  PubMed  Google Scholar 

  66. Sugatani T, Alvarez UM, Hruska KA. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem. 2003;90(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  67. Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun. 2000;268(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  68. Pitari MR, Rossi M, Amodio N, Botta C, Morelli E, Federico C, et al. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6(29):27343–58.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brunetti G, Oranger A, Mori G, Centonze M, Colaianni G, Rizzi R, et al. The formation of osteoclasts in multiple myeloma bone disease patients involves the secretion of soluble decoy receptor 3. Ann N Y Acad Sci. 2010;1192:298–302.

    Article  CAS  PubMed  Google Scholar 

  70. Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M, et al. Dickkopf-1: a suitable target for the management of myeloma bone disease. Expert Opin Ther Targets. 2009;13(7):839–48.

    Article  CAS  PubMed  Google Scholar 

  71. McDonald MM, Reagan MR, Youlten SE, Mohanty ST, Seckinger A, Terry RL, et al. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood. 2017;129(26):3452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. T** EP, Derksen PW, Kataoka H, Spaargaren M, Pals ST. Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator. Blood. 2004;104(7):2172–5.

    Article  CAS  PubMed  Google Scholar 

  73. Hjertner O, Torgersen ML, Seidel C, Hjorth-Hansen H, Waage A, Borset M, et al. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood. 1999;94(11):3883–8.

    Article  CAS  PubMed  Google Scholar 

  74. Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood. 1998;91(3):806–12.

    Article  CAS  PubMed  Google Scholar 

  75. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res. 1989;4(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  76. Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  77. Silbermann R, Bolzoni M, Storti P, Guasco D, Bonomini S, Zhou D, et al. Bone marrow monocyte−/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma. Leukemia. 2014;28(4):951–4.

    Article  CAS  PubMed  Google Scholar 

  78. ** H, An R, Li L, Wang G, Tao Y, Gao L. Myeloma bone disease: progress in pathogenesis. Prog Biophys Mol Biol. 2016;122(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  79. Robbiani DF, Colon K, Ely S, Ely S, Chesi M, Bergsagel PL. Osteopontin dysregulation and lytic bone lesions in multiple myeloma. Hematol Oncol. 2007;25(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  80. Roux S, Mariette X. The high rate of bone resorption in multiple myeloma is due to RANK (receptor activator of nuclear factor-kappaB) and RANK ligand expression. Leuk Lymphoma. 2004;45(6):1111–8.

    Article  CAS  PubMed  Google Scholar 

  81. Bouyssou JM, Ghobrial IM, Roccaro AM. Targeting SDF-1 in multiple myeloma tumor microenvironment. Cancer Lett. 2016;380(1):315–8.

    Article  CAS  PubMed  Google Scholar 

  82. Beider K, Begin M, Abraham M, Wald H, Weiss ID, Wald O, et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol. 2011;39(3):282–92.

    Article  CAS  PubMed  Google Scholar 

  83. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hongming H, Jian H. Bortezomib inhibits maturation and function of osteoclasts from PBMCs of patients with multiple myeloma by downregulating TRAF6. Leuk Res. 2009;33(1):115–22.

    Article  PubMed  Google Scholar 

  85. Chen H, Li M, Sanchez E, Wang CS, Lee T, Soof CM, et al. Combined TRAF6 targeting and proteasome blockade has anti-myeloma and anti-bone resorptive effects. Mol Cancer Res. 2017;15(5):598–609.

    Article  CAS  PubMed  Google Scholar 

  86. Liu H, Tamashiro S, Baritaki S, Penichet M, Yu Y, Chen H, et al. TRAF6 activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk. 2012;12(3):155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu G, Liu K, Anderson J, Patrene K, Lentzsch S, Roodman GD, et al. Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation. Blood. 2012;119(18):4205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. John Ashcroft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrews, R.E., Chantry, A.D., Ashcroft, A.J. (2021). The Pathophysiology of Myeloma Bone Disease: Bone Remodelling and the Role of Osteoclasts. In: Zamagni, E. (eds) Management of Bone Disease and Kidney Failure in Multiple Myeloma. Springer, Cham. https://doi.org/10.1007/978-3-030-63662-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63662-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63661-6

  • Online ISBN: 978-3-030-63662-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation