Rehabilitation Technologies

  • Chapter
  • First Online:
Durability of Concrete Structures

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 16))

  • 362 Accesses

Abstract

Several pathological manifestations existing in the buildings lead to a decrease in the durability and useful life of the building. These problems require an adequate correction to be made to restore the building’s conditions of use. To make these corrections, there are several techniques and materials that can be used, including the reconstitution of concrete, crack injection techniques, surface protection, electrochemical techniques and structural reinforcement, some of which are addressed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Tair AI, Lavery D, Nadjai A, Rigden SR, Ahmed TMA (2000) A new method for evaluating the surface roughness of concrete cut for repair or strengthening. Constr Build Mater 14:171–176

    Article  Google Scholar 

  • Almeida E et al (2006) Anticorrosive painting for a wide spectrum of marine atmospheres: Environmental-friendly versus traditional paint systems. Progress Organic Coatings 57:11–22

    Google Scholar 

  • American Concrete Institute (2015) ACI Structural Journal ACI. Guide for the Design and Construction of Structural Concrete Reinforced with Fiber- Reinforced Polymer (FRP) Bars. New York. ACI. 4401R-15

    Google Scholar 

  • American Concrete Institute (1994) Guide to shotcrete. Detroit, ACI 506 R-90

    Google Scholar 

  • Baltazar L. et al. Surface skin protection of concrete with silicate-based impregnations: influence of the substrate roughness and moisture. Construction Building Mater 70:191–200

    Google Scholar 

  • Bethencourt M, Botana FJ, Cano MJ, Osuna RM, Marcos M (2003) Degradation mechanism of an acrylic water-based paint applied to steels. Progress Organic Coatings 47, ed 2, pp 164–168

    Google Scholar 

  • Callister Jr, WD, Rethwisch DG (2012) Ciência e Engenharia dos Materiais: Uma Introdução. LTC, v. 8° Edição

    Google Scholar 

  • Chess PM, Broomfield JM (2014) History and principles of protection for reinforced concrete. In: Chess PM, Broomfield JP (eds) Cathodic protection of steel in concrete and masonry. CRC Press, Boca Raton FL

    Google Scholar 

  • Cruz JS, Barros J (2004) Modeling of bond between near-surface mounted CFRP laminate strips and concrete. Comput Struct 82(17–19):1513–1521 (2004). https://doi.org/10.1016/j.compstruc.2004.03.047

  • Curcio F, Deangelis B, Pagliolico S (1998) Metakaolin as a pozzolanic microfiller for high-performance mortars. Cem Concr Res 28(6):803–809

    Article  Google Scholar 

  • Cusson D, Mailvaganam N (1996) Durability of repair materials. Concrete Int-Design Constr 18(3):34–38

    Google Scholar 

  • Davies K, Broomfield JP (2014) Cathodic protection mechanism and a review of criteria. In: Chess PM, Broomfield JP (eds) Cathodic protection of steel in concrete and masonry. CRC Press, Boca Raton FL

    Google Scholar 

  • Deng H, Zhang R, Valenca R, ** J, Fu Q, Bilotti E, Peijis T (2013) Strain sensing behavior of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Sci Technol 74(24):1–5

    Google Scholar 

  • Dyer T (2014) Concrete durability. CRC Press, Boca Raton FL

    Google Scholar 

  • Elbakry HMF, Tarabia AM (2016) Factors affecting bond strength of RC column jackets. Alexandria Eng J 55(1):57–67

    Article  Google Scholar 

  • Feng-Quing et al (2011) Preparation and properties of an environment friendly polymer-modified waterproof mortar Construction and Building Materials 25:2635–2638

    Google Scholar 

  • Gomes MA (2015) Propriedades Mecânicas de Compósitos Poliméricos Reforçados com Fibras de Folhas de Abacaxizeiro (Palf). Tese de Doutorado. UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO—UENF CAMPOS DOS GOYTACAZES—RJ AGOSTO

    Google Scholar 

  • Goyal A et al (2018) A review of corrosion and protection of steel in concrete. Arabian J Sci Eng. Saudi Arabia, pp 5035–5055

    Google Scholar 

  • Helene PRL (1988) Manual Prático e Reforço de Estruturas de Concreto. São Paulo: Pini

    Google Scholar 

  • Júlio ENBS,  Branco FAB, Silva VD (2004) Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Constr Build Mater 18(9):675–681

    Google Scholar 

  • Karzad AS, Toubat SA, Maalej M, Estephane P (2017) Repair of reinforced concrete beams using carbon fiber reinforced Polymer. MATEC Web of Conferences, volume 120, 01008, 2017. 10.1051

    Google Scholar 

  • Koumoulos EP, Trompeta AF, Santos RM, Martins M, Santos CMD, Iglesias V, Böhm R, Gong G, Chiminelli A, Verpoest I et al (2019) Research and development in carbon fibers and advanced high-performance composites supply Chain in Europe: a roadmap for challenges and the industrial uptake. J Compos Sci 3:86

    Article  Google Scholar 

  • Khalifa AM (2016) Flexural performance of RC beams strengthened with near surface mounted CFRP strips. Egypt. Alexandria Eng J 55:pp 1497–1505

    Google Scholar 

  • Lachovicz PO (2020) Influência do tipo de malha metálica e do tipo de argamassa de realcalinização eletroquímica de estruturas de concreto carbonatado. Dissertação de mestrado, UTFPR, Curitiba, Pr

    Google Scholar 

  • Lazo EM, Rinchon JPM (2018) Hybrid artificial intelligence-based bond strength model of CFRP-lightweight concrete composite. MATEC Web Conf. Volume 192, 2018 The 4th International Conference on Engineering, Applied Sciences and Technology

    Google Scholar 

  • Leoni RI (2016) Reforço de estruturas utilizando fibras de carbono: comparação do desempenho de vigas reforçadas com as técnicas EBR e NSM. 2016. 72 f. Monografia (Especialização)—Programa de Educação Continuada da Escola Politécnica da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Lorenzis L, Teng JG (2007) Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures Hong Kong. Composites: Part B 38:119–143

    Article  Google Scholar 

  • Macdonald S, Broomfield J (2003) Repairing damaged concrete. In: Macdonald S (ed) Concrete building pathology. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Mietz IJ (1995) Electrochemical realkalisation for rehabilitation of reinforced concrete structures. Materials Corrosion 46:527–533

    Google Scholar 

  • Mendes AP, Clivatti N, Araújo SK, Mazer W (2017) Análise da eficiência de compósitos de fibra de carbono utilizados como reforço estrutural em pilares esbeltos de concreto armado. Sodebras 12(139):127–131

    Google Scholar 

  • Moreno JR, Selmo SM, de S (2007) Aderência de argamassas de reparo de estruturas de concreto. Boletim técnico da escola politécnica da USP. São Paulo

    Google Scholar 

  • Nanni A (2000) Carbon fibers in civil structures: rehabilitation and new construction. Proc the global outlook for carbon fiber 2000, Intertech, San Antonio, Texas, December 4–6, 6 p

    Google Scholar 

  • Oliveira G, Alves L (2018) Uso de argamassa polimérica na recuperação estrutural. Boletim de Gerenciamento, 56–64

    Google Scholar 

  • Parmar R, Rabara D, Rana P, Machhi U, Panchal U, Kansagra M (2018) Use of polymer composite in bridge rehabilitation. 2º International conference on current research trends in engineering and technology, IJSRSET vol 4 Issue 5 Print ISSN: 2395–1990| Online ISSN: 2394-4099

    Google Scholar 

  • Poletto M (2017) Compósitos termoplásticos com madeira—uma breve revisão. Revista Interdisciplinar de Ciência Aplicada, Petrópolis 4(2):42–482017

    Google Scholar 

  • Raupach M, Büttner T (2014) Concrete Repair to EN 1504. CRC Press, Boca Raton FL

    Book  Google Scholar 

  • Santos GMS, Ross HLS, Habitzreuter L (2013) Análise da eficiência do reforço estrutural com fibra de carbono em pilares curtos. Monografia de graduação, UTFPR Curitiba, Pr

    Google Scholar 

  • Scarfato P, Russo P, Acierno D (2011) Preparation, characterization, and release behavior of nanocomposite microparticles based on polystyrene and different layered silicates. J Applyed Pollimer Sci. https://doi.org/10.1002/app.34783

    Article  Google Scholar 

  • Schneck U (2011) Electrochemical chloride extraction. In: Concrete repair, A practical guide, Ed. Grantham, M. G

    Google Scholar 

  • Sherwood P (1966) Protection against atmospheric corrosion of industrial plant, Anti-Corrosion. Methods Mater 13(4):13–14

    Google Scholar 

  • Schneider FH, Schultz JL, Wierzbicki LR, Mazer W (2017) Análise Do Desempenho da Ancoragem do Reforço de Fibras de Carbono em Vigas Submetidas à Flexão. Curitiba. Revista Técnico Científica Do Crea-PR 1:1–17

    Google Scholar 

  • SIKA, Soluções para vedação de infiltrações usando os sistemas de injeção SIKA em estruturas de concreto armado, alvenaria e pedra natural, Catálogo técnico, São Paulo (2020)

    Google Scholar 

  • Silva MTQS, Tokarski RB, Brunhara CA, Corrêa CJ, Mazer W (2019) Parâmetros de cálculo para pilares medianamente esbeltos com diferentes fck’s e camadas de fibra de carbono. Brazilian J Develop. https://doi.org/10.34117/bjdv5n12-254

    Article  Google Scholar 

  • Souza V, Ripper T (1998) Patologia, Recuperação e Reforço de Estrutura de Concreto. Pini, São Paulo

    Google Scholar 

  • Souza JVC (2017) Análise da influência de 3 tipos de resinas no reforço de fibras de carbono em vigas de concreto armado rompidas por flexão normal. Monografia de graduação. UNESC

    Google Scholar 

  • Tadolini SC, Mills PS, Burkhard DR (2018) Tekcrete Fast®: Fiber-reinforced, rapid-setting sprayed concrete for rib and surface control. Int J Mining Sci Technol 28(1):29–34

    Article  Google Scholar 

  • Techniques Soluções em engenharia, acessado em 05/08/2020. https://techniques.com.br/injecao-de-resinas-epoxi-poliuretano-e-gel-acrilico/

  • Vasconcelos E, Fernandes S, Aguiar J, Pacheco-Torgal F (2011) Concrete retrofitting using metakaolin geopolymer mortars and CFPR. Constr Build Mater, 3213–3221

    Google Scholar 

  • Wang W et al (2020) Fabrication of all-dimensional superhydrophobic mortar with enhanced waterproof ability and freeze-thaw resistance. Constr Build Mater 238:117626–117636

    Google Scholar 

  • Wood JGM, King ES, Leek DS (1990) Concrete repair materials for effective structural applications. Constr Build Mater 4(2):64–67

    Google Scholar 

  • Yeih W, Chang JJ (2005) A study on the efficiency of electrochemical realkalisation of carbonated concrete. Constr Build Mater 19:516–524

    Article  Google Scholar 

  • Zhang SS, Yu T, Chen GM (2017) Reinforced concrete beams strengthened in flexure with near-surface mounted (NSM) CFRP strips: current status and research needs China. Composites Part B 131:30–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazer, W., Ferreira, E.O., Simões da Silva, M.T.Q., Basso Tokarski, R. (2021). Rehabilitation Technologies. In: Delgado, J.M.P.Q. (eds) Durability of Concrete Structures. Building Pathology and Rehabilitation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-62825-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62825-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62824-6

  • Online ISBN: 978-3-030-62825-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation