Accuracy Improvement and Process Flow Adaption for Robot Machining

  • Conference paper
  • First Online:
Digital Conversion on the Way to Industry 4.0 (ISPR 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 2048 Accesses

Abstract

Complex structures and a high level of customization in architecture and construction industries require the usage of industrial robots for milling or additive manufacturing applications. Due to economic aspects and the intensive research on robot machining, conventional machine tools are increasingly superseded for specific tasks by industrial robots. However, assembling errors during the manufacturing process and low structural stiffness of industrial robots are still main reasons for inaccuracies of robotic based machining. This paper presents a comparison between industrial robots and cnc machine tools and evaluates their strength and weaknesses. Furthermore, recently published works considering robot calibration and offline compensation strategies in order to increase the absolute and machining accuracy are presented. Finally, the adaption of an existing robot machining process chain with additional components underlines the potential of robots for machining tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ji, W., Wang, L.: Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 103(1–4), 1239–1255 (2019). https://doi.org/10.1007/s00170-019-03403-z

  2. Klimchik, A.: Enhanced stiffness modeling of serial and parallel manipulators for robotic-based processing of high performance materials, p. 161 (2012)

    Google Scholar 

  3. Andrew Liou, Y.H., Lin, P.P., Lindeke, R.R., Chiang, H.D.: Tolerance specification of robot kinematic parameters using an experimental design technique—the Taguchi method. Robot. Comput. Integr. Manuf. 10(3), 199–207 (1993). https://doi.org/10.1016/0736-5845(93)90055-o

  4. Karan, B., Vukobratović, M.: Calibration and accuracy of manipulation robot models. Mech. Mach. Theory 29, 479–500 (1994). https://doi.org/10.1016/0094-114X(94)90130-9

    Article  Google Scholar 

  5. Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot. Comput. Integr. Manuf. 29(1), 236–245 (2013). https://doi.org/10.1016/j.rcim.2012.06.004

    Article  Google Scholar 

  6. Nguyen, H.-N., Le, P.-N., Kang, H.-J.: A new calibration method for enhancing robot position accuracy by combining a robot model–based identification approach and an artificial neural network–based error compensation technique. Adv. Mech. Eng. 11(1), 168781401882293 (2019). https://doi.org/10.1177/1687814018822935

  7. Newman, W.S., Birkhimer, C.E., Horning, R.J., Wilkey, A.T.: Calibration of a Motoman P8 robot based on laser tracking. In: Proceedings 2000 ICRA Millennium Conference on IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 4, pp. 3597–3602, April 2000. Bd.4, https://doi.org/10.1109/robot.2000.845292

  8. Brutscheck, T., Bücker, M.: Modellierung von Roboterkinematiken nach Denavit und Hartenberg. In: Bandow, G., Holzmüller, H.H. (eds.) Das ist gar kein Modell!: Unterschiedliche Modelle und Modellierungen in Betriebswirtschaftslehre und Ingenieurwissenschaften, pp. 149–165. Gabler, Wiesbaden (2009)

    Google Scholar 

  9. Mooring, B., Roth, Z.S., Driels, M.R.: Fundamentals of Manipulator Calibration. Wiley, New York (1991)

    Google Scholar 

  10. Martinelli, A., Tomatis, N., Tapus, A., Siegwart, R.: Simultaneous localization and odometry calibration for mobile robot. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 2, pp. 1499–1504, Okt. 2003. https://doi.org/10.1109/iros.2003.1248856

  11. Jiang, Z., Zhou, W., Li, H., Mo, Y., Ni, W., Huang, Q.: A New kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Trans. Industr. Electron. 65(4), 3337–3345 (2018). https://doi.org/10.1109/TIE.2017.2748058

    Article  Google Scholar 

  12. Song, Y., Zhang, J., Lian, B., Sun, T.: Kinematic calibration of a 5-DoF parallel kinematic machine. Precision Eng. 45, 242–261 (2016) https://doi.org/10.1016/j.precisioneng.2016.03.002

  13. Ginani, L., Motta, J.: Theoretical and practical aspects of robot calibration with experimental verification. J. Brazilian Soc. Mech. Sci. Eng. 33, 15–21 (2011). https://doi.org/10.1590/s1678-58782011000100003

  14. Ye, S.H., Wang, Y., Ren, Y.J., Li, D.K.: Robot calibration using iteration and differential kinematics. J. Phys. Conf. Ser. 48, 1–6 (2006). https://doi.org/10.1088/1742-6596/48/1/001

  15. Lightcap, C., Hamner, S., Schmitz, T., Banks, S.: Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration. IEEE Trans. Rob. 24(2), 452–456 (2008). https://doi.org/10.1109/TRO.2007.914003

    Article  Google Scholar 

  16. ABB. Absolute Accuracy, February 2005. https://library.e.abb.com/public/0f879113235a0e1dc1257b130056d133/Absolute%20Accuracy%20EN_R4%20US%2002_05.pdf (zugegriffen Mai 18, 2020)

  17. Altintas, Y., Ber, A.A.: Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Appl. Mech. Rev. 54(5), B84–B84 (2001). https://doi.org/10.1115/1.1399383

    Article  Google Scholar 

  18. Wang, J., Zhang, H., Pan, Z.: Machining with Flexible Manipulators: Critical Issues and Solutions (2006)

    Google Scholar 

  19. Cen, L., Melkote, S.N.: CCT-based mode coupling chatter avoidance in robotic milling. J. Manuf. Process. 29, 50–61 (2017). https://doi.org/10.1016/j.jmapro.2017.06.010

  20. Klimchik, A., Ambiehl, A., Garnier, S., Furet, B., Pashkevich, A.: Efficiency evaluation of robots in machining applications using industrial performance measure. Robot. Comput. Integr. Manuf. 48,. 12–29 (2017). https://doi.org/10.1016/j.rcim.2016.12.005

  21. Engin, S., Altintas, Y.: Mechanics and dynamics of general milling cutters. Part I: helical end mills, p. 18

    Google Scholar 

  22. Diaz Posada, R.J., Schneider, U., Sridhar, A., Verl, A.: Automatic motion generation for robotic milling optimizing stiffness with sample-based planning. Machines 5(1) (2017). https://doi.org/10.3390/machines5010003

  23. Diaz Posada, J.R., Schneider, U., Pidan, S., Geravand, M., Stelzer, P., Verl, A.: High accurate robotic drilling with external sensor and compliance model-based compensation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3901–3907, Mai 2016. https://doi.org/10.1109/icra.2016.7487579

  24. **e, H., Li, W., Yin, Z.: Posture optimization based on both joint parameter error and stiffness for robotic milling. In: Intelligent Robotics and Applications, pp. 277–286. Cham (2018)

    Google Scholar 

  25. Lin, Y., Zhao, H., Ding, H.: Spindle configuration analysis and optimization considering the deformation in robotic machining applications. Robot. Comput. Integr. Manuf. 54, 83–95 (2018). https://doi.org/10.1016/j.rcim.2018.05.005

  26. Cvitanic, T., Nguyen, V., Melkote, S.N.: Pose optimization in robotic machining using static and dynamic stiffness models. Robot. Comput. Integr. Manuf. 66, 101992 (2020). https://doi.org/10.1016/j.rcim.2020.101992

  27. Cordes, M., Hintze, W.: Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int. J. Adv. Manuf. Technol. 90, April 2017. https://doi.org/10.1007/s00170-016-9461-z

  28. Tyapin, I., Kaldestad, K.B., Hovland, G.: Off-line path correction of robotic face milling using static tool force and robot stiffness. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5506–5511, Okt. 2015. https://doi.org/10.1109/iros.2015.7354157

  29. Schneider, U.: Improving robotic machining accuracy through experimental error investigation and modular compensation. Int. J. Adv. Manuf. Technol. 85, 1–13 (2014). https://doi.org/10.1007/s00170-014-6021-2

  30. Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compliance error compensation in robotic-based milling. Inf. Control Autom. Robot. 283, September 2014. https://doi.org/10.1007/978-3-319-03500-0_13

  31. Caro, S., Dumas, C., Garnier, S., Furet, B.: Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 2921–2926, Mai 2013. https://doi.org/10.1109/icra.2013.6630982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kainrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kainrath, M., Aburaia, M., Stuja, K., Lackner, M., Markl, E. (2021). Accuracy Improvement and Process Flow Adaption for Robot Machining. In: Durakbasa, N.M., Gençyılmaz, M.G. (eds) Digital Conversion on the Way to Industry 4.0. ISPR 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62784-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62784-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62783-6

  • Online ISBN: 978-3-030-62784-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation