Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter outlines the design and synthesis of a class of highly functional porous materials known as MOFs (Metal-Organic Frameworks) by various techniques including conventional, microwave-assisted, electrochemical, mechanochemical and sonochemical methods. The physical attributes of various MOFs like the strength of the frameworks and surface area, thermal stabilities, chirality, luminescence and magnetic properties are also elaborated upon, citing recent literature. MOFs as composites, specifically with nanoparticles, metal oxides, organic polymers and polyoxometalates are outlined. The use of MOFS in engineering applications, especially in CO2 capture, storage of gases, catalysis, sensing, drug delivery and as semiconductors are discussed, using specific and recent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R.: Assembly of porphyrin building blocks into network structures with large channels. Nature 369(6483), 727–729 (1994)

    Article  Google Scholar 

  2. Ahmed, I., Jhung, S.H.: Composites of metal–organic frameworks: preparation and application in adsorption. Mater. Today 17(3), 136–146 (2014)

    Article  Google Scholar 

  3. Ameloot, R., Stappers, L., Fransaer, J., Alaerts, L., Sels, B.F., De Vos, D.E.: Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21(13), 2580–2582 (2009)

    Article  Google Scholar 

  4. Barea, E., Montoro, C., Navarro, J.A.R.: Toxic gas removal metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43(16), 5419–5430 (2014)

    Article  Google Scholar 

  5. Batten, S.R., Hoskins, B.F., Moubaraki, B., Murray, K.S., Robson, R.: Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2 [M = octahedral, divalent metal; tcm = tricyanomethanide, C(CN)3–] and the Sheet Structures of [M(tcm)2(EtOH)2] (M = Co or Ni). J. Chem. Soc. Dalton Trans. (17), 2977–2986 (1999)

    Google Scholar 

  6. Bauer, C.A., Timofeeva, T.V., Settersten, T.B., Patterson, B.D., Liu, V.H., Simmons, B.A., et al.: Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks. J. Am. Chem. Soc. 129(22), 7136–7144 (2007)

    Article  Google Scholar 

  7. Bennett, T.D., Goodwin, A.L., Dove, M.T., Keen, D.A., Tucker, M.G., Barney, E.R., et al.: Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104(11), 115503 (2010)

    Article  Google Scholar 

  8. Brandon, N.P., Brett, D.J.: Engineering porous materials for fuel cell applications. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 364(1838), 147–159 (2006)

    Article  Google Scholar 

  9. Britt, D., Furukawa, H., Wang, B., Glover, T.G., Yaghi, O.M.: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. 106(49), 20637–20640 (2009)

    Article  Google Scholar 

  10. Bubnova, O., Crispin, X.: Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 5(11), 9345–9362 (2012)

    Article  Google Scholar 

  11. Bureekaew, S., Shimomura, S., Kitagawa, S.: Chemistry and application of flexible porous coordination polymers. Sci. Technol. Adv. Mater. 9(1), 014108 (2008)

    Article  Google Scholar 

  12. Buru, C.T., Li, P., Mehdi, B.L., Dohnalkova, A., Platero-Prats, A.E., Browning, N.D., et al.: Adsorption of a catalytically accessible polyoxometalate in a mesoporous channel-type metal–organic framework. Chem. Mater. 29(12), 5174–5181 (2017)

    Article  Google Scholar 

  13. Butova, V.V., Soldatov, M.A., Guda, A.A., Lomachenko, K.A., Lamberti, C.: Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85(3), 280–307 (2016)

    Article  Google Scholar 

  14. Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., et al.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42), 13850–13851 (2008)

    Article  Google Scholar 

  15. Celzard, A., Fierro, V.: Preparing a suitable material designed for methane storage: a comprehensive report. Energy Fuels 19(2), 573–583 (2005)

    Article  Google Scholar 

  16. Chae, H.K., Siberio-Pérez, D.Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A.J., et al.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974), 523–527 (2004)

    Article  Google Scholar 

  17. Chalati, T., Horcajada, P., Gref, R., Couvreur, P., Serre, C.: Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 21(7), 2220–2227 (2011)

    Article  Google Scholar 

  18. Chen, B., Yang, Y., Zapata, F., Lin, G., Qian, G., Lobkovsky, E.B.: Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 19(13), 1693–1696 (2007)

    Article  Google Scholar 

  19. Chen, Y., Li, P., Modica, J.A., Drout, R.J., Farha, O.K.: Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc. 140(17), 5678–5681 (2018)

    Article  Google Scholar 

  20. Chui, S.S.Y., Lo, S.M.F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: A chemically functionalizable nanoporous material. Science 283(5405), 1148–1150 (1999)

    Article  Google Scholar 

  21. Cui, Y., Chen, B., Qian, G.: Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 273–274, 76–86 (2014)

    Article  Google Scholar 

  22. Dong, R., Zhang, Z., Tranca, D.C., Zhou, S., Wang, M., Adler, P., et al.: A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 9(1), 2637 (2018)

    Article  Google Scholar 

  23. Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keeffe, M., et al.: Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34(4), 319–330 (2001)

    Article  Google Scholar 

  24. Fan, K., Bao, S.-S., Nie, W.-X., Liao, C.-H., Zheng, L.-M.: Iridium(III)-based metal–organic frameworks as multiresponsive luminescent sensors for Fe3+, Cr2O72−, and ATP2− in aqueous media. Inorg. Chem. 57(3), 1079–1089 (2018)

    Article  Google Scholar 

  25. Fujiwara, Y.-I., Horike, S., Kongpatpanich, K., Sugiyama, T., Tobori, N., Nishihara, H., et al.: Control of pore distribution of porous carbons derived from Mg2+ porous coordination polymers. Inorgan. Chem. Front. 2(5), 473–476 (2015)

    Article  Google Scholar 

  26. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013)

    Article  Google Scholar 

  27. Furukawa, H., Go, Y.B., Ko, N., Park, Y.K., Uribe-Romo, F.J., Kim, J., et al.: Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg. Chem. 50(18), 9147–9152 (2011)

    Article  Google Scholar 

  28. Ghosh, P., Colón, Y.J., Snurr, R.Q.: Water adsorption in UiO-66: the importance of defects. Chem. Commun. 50(77), 11329–11331 (2014)

    Article  Google Scholar 

  29. Gonzalez-Nelson, A., Coudert, F.-X., van der Veen, A.M.: Rotational dynamics of linkers in metal–organic frameworks. Nanomaterials 9(3), 330 (2019)

    Article  Google Scholar 

  30. Guillou, N., Livage, C., Drillon, M., Férey, G.: The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered ring channels. Angew. Chem. Int. Ed. 42(43), 5314–5317 (2003)

    Article  Google Scholar 

  31. Harbuzaru, B.V., Corma, A., Rey, F., Atienzar, P., Jordá, J.L., García, H., et al.: Metal–organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Ed. 47(6), 1080–1083 (2008)

    Article  Google Scholar 

  32. He, Y., Zhou, W., Qian, G., Chen, B.: Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43(16), 5657–5678 (2014)

    Article  Google Scholar 

  33. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., et al.: Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2009)

    Article  Google Scholar 

  34. Horike, S., Shimomura, S., Kitagawa, S.: Soft porous crystals. Nat. Chem. 1, 695–704 (2009)

    Article  Google Scholar 

  35. Hoskins, B.F., Robson, R.: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4‴-tetracyanotetraphenylmethane] BF4.xC6H5NO2. J. Am. Chem. Soc. 112(4), 1546–1554 (1990)

    Google Scholar 

  36. Hu, Q., Yu, J., Liu, M., Liu, A., Dou, Z., Yang, Y.: A low cytotoxic cationic metal–organic framework carrier for controllable drug release. J. Med. Chem. 57(13), 5679–5685 (2014)

    Article  Google Scholar 

  37. James, S.L.: Metal-organic frameworks. Chem. Soc. Rev. 32(5), 276–288 (2003)

    Article  Google Scholar 

  38. Janiak, C., Vieth, J.K.: MOFs, MILs and more: concepts, properties and applications for Porous Coordination Networks (PCNs). New J. Chem. 34(11), 2366–2388 (2010)

    Article  Google Scholar 

  39. Jhung, S.H., Lee, J.H., Yoon, J.W., Serre, C., Férey, G., Chang, J.S.: Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19(1), 121–124 (2007)

    Article  Google Scholar 

  40. Kalmutzki, M.J., Hanikel, N., Yaghi, O.M.: Secondary Building Units as the Turning Point in the Development of the Reticular Chemistry of MOFs. Sci. Adv. 4(10), eaat9180 (2018)

    Google Scholar 

  41. Kanezashi, M., O’Brien-Abraham, J., Lin, Y.S., Suzuki, K.: Gas permeation through DDR-type zeolite membranes at high temperatures. AIChE J. 54(6), 1478–1486 (2008)

    Article  Google Scholar 

  42. Khan, N.A., Kang, I.J., Seok, H.Y., Jhung, S.H.: Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem. Eng. J. 166(3), 1152–1157 (2011)

    Article  Google Scholar 

  43. Kim, J., Yang, S.-T., Choi, S.B., Sim, J., Kim, J., Ahn, W.-S.: Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 21(9), 3070–3076 (2011)

    Article  Google Scholar 

  44. Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004)

    Article  Google Scholar 

  45. Knoevenagel, E.: Condensationen zwischen Malonester und Aldehyden unter dem Einfluss von Ammoniak und organischen Aminen. Ber. Dtsch. Chem. Ges. 31(3), 2585–2595 (1898)

    Article  Google Scholar 

  46. Koo, J., Hwang, I.-C., Yu, X., Saha, S., Kim, Y., Kim, K.: Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 8(10), 6799–6803 (2017)

    Article  Google Scholar 

  47. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012)

    Article  Google Scholar 

  48. Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., et al.: Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253(23), 3042–3066 (2009)

    Article  Google Scholar 

  49. Kurmoo, M.: Magnetic metal–organic frameworks. Chem. Soc. Rev. 38(5), 1353–1379 (2009)

    Article  Google Scholar 

  50. Lee, S.-Y., Park, S.-J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  Google Scholar 

  51. Lee, Y.-R., Kim, J., Ahn, W.-S.: Synthesis of metal-organic frameworks: a mini review. Korean J. Chem. Eng. 30(9), 1667–1680 (2013)

    Article  Google Scholar 

  52. Leidinger, M., Rieger, M., Weishaupt, D., Sauerwald, T., Nägele, M., Hürttlen, J., et al.: Trace gas VOC detection using metal-organic frameworks as pre-concentrators and semiconductor gas sensors. Procedia Eng. 120, 1042–1045 (2015)

    Article  Google Scholar 

  53. Li, B., Wen, H.-M., Zhou, W., Chen, B.: Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5(20), 3468–3479 (2014)

    Article  Google Scholar 

  54. Li, G., **ao, P., Webley, P., Zhang, J., Singh, R., Marshall, M.: Capture of CO2 from high humidity flue gas by vacuum swing adsorption with Zeolite 13X. Adsorption 14(2), 415–422 (2008)

    Article  Google Scholar 

  55. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276 (1999)

    Article  Google Scholar 

  56. Li, H., Wang, K., Sun, Y., Lollar, C.T., Li, J., Zhou, H.-C.: Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21(2), 108–121 (2018)

    Article  Google Scholar 

  57. Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009)

    Article  Google Scholar 

  58. Lin, J.-D., Cheng, J.-W., Du, S.-W.: Five d10 3D metal–organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based ligands. Cryst. Growth Des. 8(9), 3345–3353 (2008)

    Article  Google Scholar 

  59. Lin, W., Rieter, W.J., Taylor, K.M.L.: Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48(4), 650–658 (2009)

    Article  Google Scholar 

  60. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.Y.: Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43(16), 6011–6061 (2014)

    Article  Google Scholar 

  61. Liu, Y., Xuan, W., Cui, Y.: Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 22(37), 4112–4135 (2010)

    Article  Google Scholar 

  62. Lu, C., Ben, T., Xu, S., Qiu, S.: Electrochemical synthesis of a microporous conductive polymer based on a metal–organic framework thin film. Angew. Chem. Int. Ed. 53(25), 6454–6458 (2014)

    Article  Google Scholar 

  63. Mallick, A., Saha, S., Pachfule, P., Roy, S., Banerjee, R.: Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites. J. Mater. Chem. 20(41), 9073–9080 (2010)

    Article  Google Scholar 

  64. Mason, J.A., Veenstra, M., Long, J.R.: Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5(1), 32–51 (2014)

    Article  Google Scholar 

  65. Millward, A.R., Yaghi, O.M.: Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127(51), 17998–17999 (2005)

    Article  Google Scholar 

  66. Müller, M., Hermes, S., Kähler, K., van den Berg, M.W.E., Muhler, M., Fischer, R.A.: Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem. Mater. 20(14), 4576–4587 (2008)

    Article  Google Scholar 

  67. Nishiyabu, K.: 15-Powder Space Holder Metal Injection Molding (PSH-MIM) of micro-porous metals. In: Heaney, D.F. (ed.) Handbook of Metal Injection Molding, pp. 349–390. Woodhead Publishing (2012)

    Google Scholar 

  68. Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., et al.: Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3(2), 500–507 (2013)

    Article  Google Scholar 

  69. Park, J., Jiang, Q., Feng, D., Mao, L., Zhou, H.-C.: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 138(10), 3518–3525 (2016)

    Article  Google Scholar 

  70. Pastore, V.J., Cook, T.R., Rzayev, J.: Polymer–MOF hybrid composites with high porosity and stability through surface-selective ligand exchange. Chem. Mater. 30(23), 8639–8649 (2018)

    Article  Google Scholar 

  71. Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K., Yildirim, T.: Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135(32), 11887–11894 (2013)

    Article  Google Scholar 

  72. Perry Iv, J.J., Perman, J.A., Zaworotko, M.J.: Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38(5), 1400–1417 (2009)

    Article  Google Scholar 

  73. Petit, C., Levasseur, B., Mendoza, B., Bandosz, T.J.: Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater. 154, 107–112 (2012)

    Article  Google Scholar 

  74. Pichon, A., James, S.L.: An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends. CrystEngComm 10(12), 1839–1847 (2008)

    Article  Google Scholar 

  75. Pichon, A., Lazuen-Garay, A., James, S.L.: Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8(3), 211–214 (2006)

    Article  Google Scholar 

  76. Pienack, N., Bensch, W.: In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 50(9), 2014–2034 (2011)

    Article  Google Scholar 

  77. Qiu, L.-G., Li, Z.-Q., Wu, Y., Wang, W., Xu, T., Jiang, X.: Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. (31), 3642–3644 (2008)

    Google Scholar 

  78. Robson, R.: Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka Mofs): a personal view. Dalton Trans. (38), 5113–5131 (2008)

    Google Scholar 

  79. Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325(5948), 1652–1654 (2009)

    Article  Google Scholar 

  80. Rojas, S., Colinet, I., Cunha, D., Hidalgo, T., Salles, F., Serre, C., et al.: Toward understanding drug incorporation and delivery from biocompatible metal–organic frameworks in view of cutaneous administration. ACS Omega 3(3), 2994–3003 (2018)

    Article  Google Scholar 

  81. Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., et al.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x.H2Oy. J. Am. Chem. Soc. 124(45), 13519–13526 (2002)

    Google Scholar 

  82. Shih, Y.-H., Wang, K.-Y., Singco, B., Lin, C.-H., Huang, H.-Y.: Metal–organic framework–polymer composite as a highly efficient sorbent for sulfonamide adsorption and desorption: effect of coordinatively unsaturated metal site and topology. Langmuir 32(44), 11465–11473 (2016)

    Article  Google Scholar 

  83. Shono, T., Mingos, D.M.P., Baghurst, D.R., Lickiss, P.D.: Novel Energy Sources for Reactions, vol. Chapter 4. The Press Syndicate of the University of Cambridge, Cambridge (2000)

    Google Scholar 

  84. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. In: Nanoscience and Technology, pp. 320–329. Co-Published with Macmillan Publishers Ltd., UK (2009)

    Google Scholar 

  85. Spanopoulos, I., Tsangarakis, C., Klontzas, E., Tylianakis, E., Froudakis, G., Adil, K., et al.: Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 138(5), 1568–1574 (2016)

    Article  Google Scholar 

  86. Stock, N., Biswas, S.: Synthesis of Metal-Organic Frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012)

    Article  Google Scholar 

  87. Sun, L., Campbell, M.G., Dincă, M.: Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016)

    Article  Google Scholar 

  88. Trickett, C.A., Helal, A., Al-Maythalony, B.A., Yamani, Z.H., Cordova, K.E., Yaghi, O.M.: The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017)

    Article  Google Scholar 

  89. Uemura, T., Kitagawa, K., Horike, S., Kawamura, T., Kitagawa, S., Mizuno, M., et al.: Radical polymerisation of styrene in porous coordination polymers. Chem. Commun. (48), 5968–5970 (2005)

    Google Scholar 

  90. Umeyama, D., Horike, S., Inukai, M., Itakura, T., Kitagawa, S.: Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137(2), 864–870 (2015)

    Article  Google Scholar 

  91. Vellingiri, K., Szulejko, J.E., Kumar, P., Kwon, E.E., Kim, K.-H., Deep, A., et al.: Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci. Rep. 6, 27813 (2016)

    Article  Google Scholar 

  92. Wang, F.-M., Zhou, L., Lustig, W.P., Hu, Z., Li, J.-F., Hu, B.-X., et al.: Highly luminescent metal–organic frameworks based on an aggregation-induced emission ligand as chemical sensors for nitroaromatic compounds. Cryst. Growth Des. 18(9), 5166–5173 (2018)

    Article  Google Scholar 

  93. Wang, H.-L., Yeh, H., Chen, Y.-C., Lai, Y.-C., Lin, C.-Y., Lu, K.-Y., et al.: Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis. ACS Appl. Mater. Interfaces 10(11), 9332–9341 (2018)

    Article  Google Scholar 

  94. Wang, T.C., Vermeulen, N.A., Kim, I.S., Martinson, A.B.F., Stoddart, J.F., Hupp, J.T., et al.: Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat. Protoc. 11, 149–162 (2015)

    Article  Google Scholar 

  95. Wang, Y.B., Liu, D.S., Pan, T.H., Liang, Q., Huang, X.H., Wu, S.T., et al.: Structural variation from 1D to 3D: effect of metal centres on the construction of metal–organic coordination polymers with N-(1H-tetrazol-5-yl)benzamide ligand. CrystEngComm 12(11), 3886–3893 (2010)

    Article  Google Scholar 

  96. Work, W.J., Horie, K., Hess, M., Stepto, R.F.T.: Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004). Pure Appl. Chem. 76(11), 1985–2007 (2004)

    Article  Google Scholar 

  97. Wu, M.-X., Yang, Y.-W.: Metal–Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29(23), 1606134 (2017)

    Article  Google Scholar 

  98. **ang, W., Zhang, Y., Lin, H., Liu, C.-J.: Nanoparticle/metal–organic framework composites for catalytic applications: current status and perspective. Molecules 22(12), 2103 (2017)

    Article  Google Scholar 

  99. Xuan, W., Zhu, C., Liu, Y., Cui, Y.: Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41(5), 1677–1695 (2012)

    Article  Google Scholar 

  100. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423(6941), 705–714 (2003)

    Article  Google Scholar 

  101. Yi, F.-Y., Chen, D., Wu, M.-K., Han, L., Jiang, H.-L.: Chemical sensors based on metal–organic frameworks. ChemPlusChem 81(8), 675–690 (2016)

    Article  Google Scholar 

  102. Yu, C., Ma, S., Pechan, M.J., Zhou, H.-C.: Magnetic properties of a noninterpenetrating chiral porous cobalt metal-organic framewok. J. Appl. Phys. 101(9), 09E108 (2007)

    Article  Google Scholar 

  103. Yu, J., Mu, C., Yan, B., Qin, X., Shen, C., Xue, H., et al.: Nanoparticle/MOF composites: preparations and applications. Mater. Horiz. 4(4), 557–569 (2017)

    Article  Google Scholar 

  104. Zhang, J., Shreeve, J.N.M.: 3D nitrogen-rich metal–organic frameworks: opportunities for safer energetics. Dalton Trans. 45(6), 2363–2368 (2016)

    Article  Google Scholar 

  105. Zhu, L., Liu, X.-Q., Jiang, H.-L., Sun, L.-B.: Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117(12), 8129–8176 (2017)

    Article  Google Scholar 

  106. Zhu, Q.-L., Xu, Q.: Metal–organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014)

    Article  Google Scholar 

  107. Zlotea, C., Campesi, R., Cuevas, F., Leroy, E., Dibandjo, P., Volkringer, C., et al.: Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 132(9), 2991–2997 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. S. A. Ravoof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishak, N.N.M., Khiruddin, N.N.M., Nasri, N., Ravoof, T.B.S.A. (2021). Metal-Organic Frameworks (MOFs). In: Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A. (eds) Contemporary Nanomaterials in Material Engineering Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62761-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62761-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62760-7

  • Online ISBN: 978-3-030-62761-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation