Electrophysiology: From Molecule to Cognition, from Animal to Human

  • Chapter
  • First Online:
Modern CNS Drug Discovery

Abstract

Electrophysiology is the field of study that examines physiological signals of the brain. It ranges from assessment of molecular activity using patch clamp techniques to population measurements such as electroencephalography (EEG). This chapter deals with those methods and their role in drug discovery. The on-cell patch is the most widely used patch clamp technique, which measures the activity of one ion in a community of intracellular ions. Single-cell recordings are done to assess changes in action potentials, the output of a system. Intracranial electrodes can also be used to detect activity from multiple or populations of neurons. Depending on how the signal is filtered, indirect action potentials (i.e., output from a region) or postsynaptic signals (i.e., input to a region) are detected. A final type of measurement described in this chapter is EEG. The measured signal, obtained from the scalp, is similar to that obtained from local field potentials that are recorded intracranially. EEG measured in humans has frequently been compared to local field potentials recorded from living animals, showing a number of similarities between species. However, due to genetic or anatomical differences, in combination with differing electrode locations, it is still unclear how comparable the signals are. Future research should try to optimize animal methodology to increase the translational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahnaou A, Biermans R, Drinkenburg WHIM (2018) Cholinergic mechanisms of target oddball stimuli detection: the late P300-like event-related potential in rats. Neural Plast 2018:4270263. https://doi.org/10.1155/2018/4270263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alekseichuk I, Pabel SC, Antal A, Paulus W (2017) Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci 35(2):147–158

    PubMed  Google Scholar 

  • Amirabadi S, Pakdel FG, Shahabi P, Naderi S, Asalou MA, Cankurt U (2014) Microinfusion of bupropion inhibits putative GABAergic neuronal activity of the ventral tegmental area. Basic Clin Neurosci 5(3):182–190

    PubMed  PubMed Central  Google Scholar 

  • Bissonnette JN, Francis AM, Hull KM, Leckey J, Pimer L, Berrigan LI, Fisher DJ (2020) MMN-indexed auditory change detection in major depressive disorder. Clin EEG Neurosci 51(6):365–372. https://doi.org/10.1177/1550059420914200

    Article  PubMed  Google Scholar 

  • Blokland A, Prickaerts J, van Duinen M, Sambeth A (2015) The use of EEG parameters as predictors of drug effects on cognition. Eur J Pharmacol 759:163–168

    CAS  PubMed  Google Scholar 

  • Bosman CA, Lansink CS, Pennartz CM (2014) Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci 39(11):1982–1999

    PubMed  Google Scholar 

  • Burns SP, **ng D, Shapley RM (2010) Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex. J Neurosci 30(41):13739–13749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Moser EL (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2):130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Ann Rev Neurosci 35:203–225

    CAS  PubMed  Google Scholar 

  • Cacucci F, Wills TJ, Lever C, Giese KP, O’Keefe J (2007) Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the alpha-isoform of the calcium/calmodulin-dependent protein kinase II. J Neurosci 27(29):7854–7859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldenhove S, Borghans LGJM, Blokland A (2017) Sambeth A. role of acetylcholine and serotonin in novelty processing using an oddball paradigm. Behav Brain Res 331:199–204

    CAS  PubMed  Google Scholar 

  • Cancelli I, Cadore IP, Merlino G, Valentinis L, Moratti U, Bergonzi P, Gigli GL, Valente M (2006) Sensory gating deficit assessed by P50/Pb middle latency event related potential in Alzheimer’s disease. J Clin Neurophysiol 23(5):421–425

    PubMed  Google Scholar 

  • Chen TC, Hsieh MH, Lin YT, Chan PS, Cheng CH (2020) Mismatch negativity to different deviant changes in autism spectrum disorders: a meta-analysis. Clin Neurophysiol 131(3):766–777

    PubMed  Google Scholar 

  • Cheng CH, Chan PS, Liu CY, Hsu SC (2016) Auditory sensory gating in patients with bipolar disorders: a meta-analysis. J Affect Disord 203:199–203

    PubMed  Google Scholar 

  • Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17(4):239–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Graaf TA, Hsieh PJ, Sack AT (2012) The ‘correlates’ in neural correlates of consciousness. Neurosci Biobehav Rev 36(1):191–197

    PubMed  Google Scholar 

  • Dohrmann AL, Strengler K, Jahn I, Olbrich S (2017) EEG-arousal regulation as predictor of treatment response in patients suffering from obsessive compulsive disorder. Clin Neurophysiol 128(1):1906–1914

    PubMed  Google Scholar 

  • Drinkenburg WHIM, Ruigt GSF, Ahnaou A (2015) Pharmaco-EEG studies in animals: an overview of contemporary translational applications. Neuropsychobiology 72:151–164

    CAS  PubMed  Google Scholar 

  • Evans DE, Maxfield ND, van Rensburg KJ, Oliver JA, Jentink KG, Drobes DJ (2013) Nicotine deprivation influences P300 markers of cognitive control. Neuropsychopharmacology 38(12):2525–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farre C, Haythornthwaite A, Haarmann C, Stoelzle S, Kreir M, George M, Bruggemann A, Fertig N (2009) Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. Com Chem High Throughput Screen 12(1):24–37

    CAS  Google Scholar 

  • Haigh SM, Coffman BA, Salisbury DF (2017) Mismatch negativity in first-episode schizophrenia: a meta-analysis. Clin EEG Neurosci 48(1):3–10

    PubMed  Google Scholar 

  • Hauser MFA, Wiescholleck V, Colitti-Klausnitzer J, Bellebaum C, Manahan-Vaughan D (2019) Event-related potentials evoked by passive visuospatial perception in rats and humans reveal common denominators in information processing. Brain Struct Funct 224(4):1583–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heida T, Poppe NR, de Vos CC, van Putten MJ, van Vugt JP (2014) Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease. Clin Neurophysiol 125(9):1819–1825

    CAS  PubMed  Google Scholar 

  • Heinricher MM (2004) 2 Principles of extracellular single-unit recording, p 8–13

    Google Scholar 

  • Hong X, Sun J, Wang J, Li C, Tong S (2020) Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task. Int J Psychophysiol 148:1–12

    PubMed  Google Scholar 

  • Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi A (2018) EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci 23:183–220

    Google Scholar 

  • Huang WJ, Chen WW, Zhang X (2015) The neurophysiology of P300 – an integrated review. Eur Rev Med Pharmacol Sci 19(8):1480–1488

    PubMed  Google Scholar 

  • Javitt DC, Freedman R (2015) Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 172(1):17–31

    PubMed  Google Scholar 

  • Johnson R (1986) a triarchic model of P300 amplitude. Psychophysiology 23:367–383

    PubMed  Google Scholar 

  • Kenemans JL, Kähkönen S (2011) How human electrophysiology informs psychopharmacology: from bottom-up driven processing to top-down control. Neuropsychopharmacology 36(1):26–51

    CAS  PubMed  Google Scholar 

  • Klimesch W (2012) α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617

    PubMed  PubMed Central  Google Scholar 

  • Klinkenberg I, Blokland A, Riedel WJ, Sambeth A (2013a) Cholinergic manipulation of auditory processing, sensory gating, and novelty detection in human participants. Psychopharmacology (Berl) 225(4):903–921

    CAS  Google Scholar 

  • Klinkenberg I, Sambeth A, Blokland A (2013b) Cholinergic gating of hippocampal auditory evoked potentials in freely moving rats. Eur Neuropsychopharmacol 23(8):988–997

    CAS  PubMed  Google Scholar 

  • Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38(3):557–577

    CAS  PubMed  Google Scholar 

  • Larrain-Valenzuela J, Zamorano F, Soto-Icaza P, Carrasco X, Herrera C, Daiber F, Aboitiz F, Billeke P (2017) Theta and alpha oscillation impairments in autistic spectrum disorder reflect working memory deficit. Sci Rep 7(1):14328

    PubMed  PubMed Central  Google Scholar 

  • Lavoie S, Jack BN, Griffiths O, Ando A, Amminger P, Couroupis A, Jago A, Markulev C, McGorry PD, Nelson B, Polari A, Yuen HP, Whitford TJ (2018) Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophr Res 191:95–100

    PubMed  Google Scholar 

  • Leblois A, Pouzat C (2017) Multi-unit recording. In: Neurobiology of motor control: fundamental concepts and new directions. Wiley & Sons, Hoboken

    Google Scholar 

  • Leuchter AF, Hunter AM, Jain FA, Tartter M, Crump C, Coook IA (2017) Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first week of treatment of major depressive disorder. J Psychiatr Res 84:174–183

    PubMed  Google Scholar 

  • Lever C, Wills T, Cacucci F, Brugess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geography. Nature 416:90–94

    CAS  PubMed  Google Scholar 

  • Li Y, Kang C, Wei Z, Qu X, Liu T, Zhou Y, Hu Y (2017) beta oscillations in major depression – signalling a new cortical circuit for central executive function. Sci Rep 7(1):18021

    PubMed  PubMed Central  Google Scholar 

  • Light GA, Braff DL (1998) The ‘incredible shrinking’ P50 event-related potential. Biol Psychiatry 43(12):918–920

    CAS  PubMed  Google Scholar 

  • Liu C, Li T, Chen J (2019) Role of high-throughput electrophysiology in drug discovery. Curr Protoc Pharmacol 87(1):e69

    PubMed  Google Scholar 

  • McNally JM, McCarley RW (2016) Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr Opin Psychiatry 29(3):202–210

    PubMed  PubMed Central  Google Scholar 

  • Meyer M, Endedijk HM, van Ede F, Hunnius S (2019) Theta oscillations in 4-year-olds are sensitive to task engagement and task demands. Sci Rep 9(1):6049

    PubMed  PubMed Central  Google Scholar 

  • Michie PT, Malmierca MS, Harms L, Todd J (2016) The neurobiology of MMN and implications for schizophrenia. Biol Psychol 116:90–97

    PubMed  Google Scholar 

  • Motoi H, Jeon J-W, Juhasz C, Miyakoshi M, Nakai Y, Sugiura A, Luat AF, Sood S, Asano E (2019) Quantitative analysis of intracranial electrocorticography signals using the concept of statistical parametric map**. Sci Rep 9:17385

    PubMed  PubMed Central  Google Scholar 

  • Nagai T, Kirihara K, Tada M, Koshiyama D, Koike S, Suga M, Araki T, Hasimoto K, Kasai K (2017) Reduced mismatch negativity is associated with increased plasme level of glutamate in first-episode psychosis. Sci Rep 7(1):2258

    PubMed  PubMed Central  Google Scholar 

  • Newson JJ, Thiagarajan TC (2019) EEG frequency bands in psychiatric disorders: a review of resting state studies. Fron Hum Neurosci 12:1–24

    Google Scholar 

  • Noda Y (2020) Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: a systematic review. Psychiatry Clin Neurosci 74(1):12–34

    PubMed  Google Scholar 

  • Noh MC, Stemkowski PL, Smith PA (2019) Long-term actions of interleukin-1β on K+, Na+, and Ca2+ channel currents in small, IB4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain. J Neuroimmunol 332:198–211

    CAS  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    PubMed  Google Scholar 

  • Pfurtscheller G (2001) Functional brain imaging based on ERD/ERS. Vis Res 41:1257–1260

    CAS  PubMed  Google Scholar 

  • Picken C, Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2020) The theta/beta ratio as an index of cognitive processing in adults with the combined type of attention deficit hyperactivity disorder. Clin EEG Neurosci 51(3):167–173

    PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    PubMed  PubMed Central  Google Scholar 

  • Pourbadi HG, Naderi N, Delavar HM, Hosseinzadeh M, Mehranfard N, Khodagholi F, Janahmadi M, Motamdei F (2017) Decrease of high voltage Ca2+ currents in the dentate gyrus granule cells by entorhinal amyloidopathy is reversed by calcium channel blockade. Eur J Pharmacol 794:154–161

    Google Scholar 

  • Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    PubMed  Google Scholar 

  • Reneerkens OA, Sambeth A, Blokland A, Prickaerts J (2013) PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res 250:251–256

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fabbri-Destro M, Caruana F, Avanzini P (2018) System neuroscience: past, presence, and future. CNS Neurosci Ther 24(8):685–693

    PubMed  PubMed Central  Google Scholar 

  • Sambeth A (2004) Studies on the effects of learning on the event-related potential. A between species comparison. PhD dissertation, Radboud University Nijmegen

    Google Scholar 

  • Sambeth A, Maes JHR (2006) A comparison of event-related potentials of humans and rats elicited by a serial feature-positive discrimination task. Learn Motiv 37(3):269–288

    Google Scholar 

  • Sambeth A, Maes JH, van Luijtelaar G, Molenkamp IB, Jongsma ML, van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40(1):60–68

    PubMed  Google Scholar 

  • Sambeth A, Maes JH, Quian Quiroga R, Coenen AM (2004) Effects of stimulus repetitions on the event-related potential of humans and rats. Int J Psychophysiol 53(3):197–205

    PubMed  Google Scholar 

  • Sambeth A, Riedel WJ, Smits LT, Blokland A (2007) Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 572:151–159

    CAS  PubMed  Google Scholar 

  • Sambeth A, Meeter M, Blokland B (2009) Hippocampal theta frequency and novelty. Hippocampus 19:407–408

    PubMed  Google Scholar 

  • Sevik AE, Anil Yagcioglu AE, Yagioglu S, Karahan S, Gurses N, Yildiz M (2011) Neuropsychological performance and auditory event-related potentials in schizophrenia patients and their siblings: a family study. Schizophr Res 130:195–202

    PubMed  Google Scholar 

  • Smucny J, Steven KE, Olincy A, Tregellas JR (2015) Translational utility of rodent hippocampal auditory gating in schizophrenia research: a review and evaluation. Transl Psychiatry e587:5

    Google Scholar 

  • Snyder MA, Gao WJ (2019) NMDA receptor hypofunction for schizophrenia revisited: perspectives from epigenetic mechanisms. Schizophr Res 217:60–70. https://doi.org/10.1016/j.schres.2019.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Tada M, Kirihara K, Koshiyama D, Fujioka M, Usui K, Uka T, Komatsu M, Kunii N, Araki T, Kasai K (2020) Gamma-band auditory steady-state response as a neurophysiological marker for excitation and inhibition balance: a review for understanding schizophrenia and other neuropsychiatric disorders. Clin EEG Neurosci 51(4):234–243. https://doi.org/10.1177/1550059419868872

    Article  PubMed  Google Scholar 

  • Todd J, Harms L, Schall U, Michie PT (2013) Mismatch negativity: translation the potential. Front Psych 4:171

    Google Scholar 

  • Uhlhaas PJ, Singer W (2015) Oscillations and neuronal dynamics in schizophrenia: the serach for basic symptoms and translational opportunities. Biol Psychiatry 77(12):1001–1009

    PubMed  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophrenia Res 76:1–23

    Google Scholar 

  • Wang Y, Chen AQ, Xue Y, Liu MF, Liu C, Liu YH, Pan YP, Diao HL, Chen L (2019) Orexins alleviate motor deficits via increasing firing activity of pallidal neurons in a mouse model of Parkinson’s disease. Am J Physiol Cell Physiol 317(4):C800–C812

    CAS  PubMed  Google Scholar 

  • Wickenden AD (2014) Overview of electrophysiological techniques. Curr Protoc Pharmacol 64:11.1.1–111.17

    Google Scholar 

  • Yehia A, Wei H (2020) Studying nicotinic acetylcholine receptors using the IonFlux microfluidic-based automated patch-clamp system with continuous perfusion and fast solution exchange. Curr Protoc Pharmacol 88(1):e73

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Sambeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sambeth, A. (2021). Electrophysiology: From Molecule to Cognition, from Animal to Human. In: Schreiber, R. (eds) Modern CNS Drug Discovery . Springer, Cham. https://doi.org/10.1007/978-3-030-62351-7_9

Download citation

Publish with us

Policies and ethics

Navigation