Characterizing the Performance of Wireless Communication Architectures via Basic Diophantine Approximation Bounds

  • Chapter
  • First Online:
Number Theory Meets Wireless Communications

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 386 Accesses

Abstract

Consider a wireless network where several users are transmitting simultaneously. Each receiver observes a linear combination of the transmitted signals, corrupted by random noise, and attempts to recover the codewords sent by one or more of the users. Within the context of network information theory, it is of interest to determine the maximum possible data rates as well as efficient strategies that operate at these rates. One promising recent direction has shown that if the users utilize a lattice-based strategy, then a receiver can recover an integer-linear combination of the codewords at a rate that depends on how well the real-valued channel gains can be approximated by integers. In other words, the performance of this lattice-based strategy is closely linked to a basic question in Diophantine approximation. This chapter provides an overview of the key findings in this emerging area, starting from first principles, and expanding towards state-of-the art results and open questions, so that it is accessible to researchers with either an information theory or Diophantine approximation background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The 1 + term from the capacity expression \(C=\frac {1}{2}\log (1+P)\) is lost to compensate for the dependence between x k and \({\mathbf e}_k={\mathbf x}_{k}-\tilde {\mathbf {y}}_k\). However, if we set H = 1 to model a point-to-point AWGN channel, we find that (2.15) is equal to the AWGN capacity \(1/2 \log (1 + P)\) as desired. See [36], [10, Lemma 2] for more details.

  2. 2.

    Specifically, it can be shown that there is a choice of rates R 1, …, R K satisfying \(\sum _k R_k = \frac {1}{2}\log {\mathrm {det}}( {\mathbf I} + P {\mathbf H}^{\mathsf T} {\mathbf H})\) that satisfies the capacity region constraints from Theorem 2.2 and any choice of rates with a higher sum rate \(\sum _k R_k > \frac {1}{2}\log {\mathrm {det}}( {\mathbf I} + P {\mathbf H}^{\mathsf T} {\mathbf H})\) will violate these capacity constraints.

  3. 3.

    The proof of Lemma 3 from [29] relied on [19, Corollary 2], which can be obtained as a special case of [5, Theorem 2].

  4. 4.

    Up to a small correction term, due to the fact that the effective user x interference,k has power (K − 1)P instead of P. See [31] for more details.

References

  1. Adiceam, F., Beresnevich, V., Levesley, J., Velani, S., Zorin, E.: Diophantine approximation and applications in interference alignment. Adv. Math. 302, 231–279 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R.: Multi-way communication channels. In: Proceedings of the 2nd International Symposium on Information Theory, Prague, pp. 23–52. Publishing House of the Hungarian Academy of Sciences, Hungarian (1971)

    Google Scholar 

  3. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beresnevich, V., Bernik, V., Budarina, N.: Systems of small linear forms and Diophantine approximation on manifolds. Ar**v e-prints (2017). http://arxiv.org/abs/1707.00371

  6. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  7. Cadambe, V.R., Jafar, S.A.: Interference alignment and the degrees of freedom for the K-user interference channel. IEEE Trans. Inf. Theory 54(8), 3425–3441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cadambe, V.R., Jafar, S.A.: Interference alignment and the degrees of freedom of wireless X networks. IEEE Trans. Inf. Theory 55(5), 2334–2344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, S.Y., Forney, G.D., Richardson, T.J., Urbanke, R.: On the design of low-density parity-check codes within 0.0045 db of the Shannon limit. IEEE Commun. Lett. 5(2), 58–60 (2001)

    Google Scholar 

  10. Cioffi, J.M., Dudevoir, G.P., Eyuboglu, M.V., Forney, G.D.: MMSE decision-feedback equalizers and coding. I. Equalization results. IEEE Trans. Commun. 43(10), 2582–2594 (1995)

    Article  MATH  Google Scholar 

  11. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken, (2006)

    MATH  Google Scholar 

  12. Domanovitz, E., Erez, U.: Outage probability bounds for integer-forcing source coding. In: Proceedings of the IEEE Information Theory Workshop (ITW 2017). Kaohsiung, Taiwan (2017)

    Google Scholar 

  13. Domanovitz, E., Erez, U.: Outage behavior of integer forcing with random unitary pre-processing. IEEE Trans. Inf. Theory 64(4), 2774–2790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. El Gamal, A., Kim, Y.H.: Network Information Theory. Cambridge University, Cambridge (2011)

    Book  MATH  Google Scholar 

  15. Erez, U., Zamir, R.: Achieving \(\frac {1}{2}\log {(1 + \mbox{SNR})}\) on the AWGN channel with lattice encoding and decoding. IEEE Trans. Inf. Theory 50(10), 2293–2314 (2004)

    Google Scholar 

  16. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guess, T., Varanasi, M.K.: An information-theoretic framework for deriving canonical decision-feedback receivers in Gaussian channels. IEEE Trans. Inf. Theory 51(1), 173–187 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, W., Nazer, B.: Integer-forcing source coding: Successive cancellation and source-channel duality. In: Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), pp. 155–159 (2016)

    Google Scholar 

  19. Hussain, M., Levesley, J.: The metrical theory of simultaneously small linear forms. Functiones et Approximatio Commentarii Mathematici 48(2), 167–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jafar, S.A.: Interference alignment—a new look at signal dimensions in a communication network. In: Foundations and Trends in Communications and Information Theory, vol. 7. NOW Publishers, Boston (2011)

    Google Scholar 

  21. Jafar, S.A., Shamai (Shitz), S.: Degrees of freedom region for the MIMO X channel. IEEE Trans. Inf. Theory 54(1), 151–170 (2008)

    Google Scholar 

  22. Liao, H.: Multiple access channels. Ph.D. thesis, University of Hawaii, Honolulu (1972)

    Google Scholar 

  23. Maddah-Ali, M.A., Motahari, A.S., Khandani, A.K.: Communication over MIMO X channels: Interference alignment, decomposition, and performance analysis. IEEE Trans. Inf. Theory 54(8), 3457–3470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. The Kluwer International International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Cambridge, (2002)

    Google Scholar 

  25. Motahari, A.S., Oveis-Gharan, S., Maddah-Ali, M.A., Khandani, A.K.: Real interference alignment: Exploiting the potential of single antenna systems. IEEE Trans. Inf. Theory 60(8), 4799–4810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazer, B., Gastpar, M.: Compute-and-forward: harnessing interference through structured codes. IEEE Trans. Inf. Theory 57(10), 6463–6486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nazer, B., Cadambe, V.R., Ntranos, V., Caire, G.: Expanding the compute-and-forward framework: unequal powers, signal levels, and multiple linear combinations. IEEE Trans. Inf. Theory 62(9), 4879–4909 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niesen, U., Maddah-Ali, M.A.: Interference alignment: from degrees-of-freedom to constant-gap capacity approximations. IEEE Trans. Inf. Theory 59(8), 4855–4888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ordentlich, O., Erez, U.: Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap. IEEE Trans. Inf. Theory 61(1), 323–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ordentlich, O., Erez, U.: Integer-forcing source coding. IEEE Trans. Inf. Theory 63(2), 1253–1269 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ordentlich, O., Erez, U., Nazer, B.: The approximate sum capacity of the symmetric K-user Gaussian interference channel. IEEE Trans. Inf. Theory 60(6), 3450–3482 (2014)

    Article  MATH  Google Scholar 

  32. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University, Cambridge (2008)

    Book  MATH  Google Scholar 

  33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  35. Wu, Y., Shamai (Shitz), S., Verdú, S.: Information dimension and the degrees of freedom of the interference channel. IEEE Trans. Inf. Theory 61(1), 256–279 (2015)

    Google Scholar 

  36. Zamir, R.: Lattice Coding for Signals and Networks. Cambridge University, Cambridge (2014)

    Book  MATH  Google Scholar 

  37. Zhan, J., Nazer, B., Erez, U., Gastpar, M.: Integer-forcing linear receivers. IEEE Trans. Inf. Theory 60(12), 7661–7685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Or Ordentlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazer, B., Ordentlich, O. (2020). Characterizing the Performance of Wireless Communication Architectures via Basic Diophantine Approximation Bounds. In: Beresnevich, V., Burr, A., Nazer, B., Velani, S. (eds) Number Theory Meets Wireless Communications. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61303-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61303-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61302-0

  • Online ISBN: 978-3-030-61303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation