Multi-class Time Continuity Voting for EEG Classification

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12462))

Included in the following conference series:

Abstract

In this study we propose a new machine learning classification method to distinguish brain activity patterns for healthy subjects. We used ElectroEncephaloGraphic (EEG) data associated with five userdefined mental tasks. We collected a data set using the Muse headband with four EEG electrodes (TP9, AF7, AF8, and TP10). Sixteen healthy subjects participated in this six-session experiment. In each session, we instructed them to conduct five different one-minute tasks, we abbreviated the tasks as think, count, recall, breathe and draw. After dealing with noise and outliers, we first fairly compared the performance of existing classifiers, including linear classifiers, non-linear Bayesian classifiers, nearest-neighbor classifiers, ensemble methods, and deep learning, with the same settings. Among these, Random Forest (RF), and Long Short-Term Memory (LSTM) outperform others. We then introduced a new ensemble classifier called Time Continuity Voting (TCV), combining these top two. The timewise cross-validation results showed that TCV could correctly classify the five tasks (20% by chance) with an accuracy of 70% which is at least 6% higher than the top individual classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahangi, A., Karamnejad, M., Mohammadi, N., Ebrahimpour, R., Bagheri, N.: Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput. Appl. 23(5), 1319–1327 (2013)

    Article  Google Scholar 

  2. Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviourdetection with recurrent neural networks. Proc. Comput. Sci. 110, 86–93 (2017)

    Article  Google Scholar 

  3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representationsfrom EEG with deep recurrent-convolutional neural networks. ar**v preprint ar**v:1511.06448 (2015)

  4. Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekart, A., Faria, D.R.: A study onmental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800. IEEE (2018)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Coyle, D., Principe, J., Lotte, F., Nijholt, A.: Guest editorial: brain/neuronal-computer game interfaces and interaction. IEEE Trans. Comput. Intell. AI Games 5(2), 77–81 (2013)

    Article  Google Scholar 

  7. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  8. Deeb, F.A., DiLillo, A., Hickey, T.: Using spinoza log data to enhance CS1 pedagogy. In: McLaren, B., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds.) International Conference on Computer Supported Education. Communications in Computer and Information Science, vol. 1022, pp. 14–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-21151-6_2

    Chapter  Google Scholar 

  9. Devlaminck, D., et al.: From circular ordinal regression to multilabel classification. In: Proceedings of the 2010 Workshop on Preference Learning (European Conference on Machine Learning, ECML), p. 15 (2010)

    Google Scholar 

  10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  11. Gang, P., et al.: User-driven intelligent interface on the basis of multimodal augmented reality and brain computer interaction for people with functional disabilities. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Future of Information and Communication Conference. Advances in Intelligent Systems and Computing, vol. 886, pp. 612–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03402-3_43

    Chapter  Google Scholar 

  12. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  13. Kwak, N.S., Müller, K.R., Lee, S.W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PloS One 12(2), e0172578 (2017)

    Article  Google Scholar 

  14. Lindig-León, C., Bougrain, L.: Comparison of sensorimotor rhythms in EEG signals during simple and combined motor imageries over the contra and ipsilateral hemispheres. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3953–3956. IEEE (2015)

    Google Scholar 

  15. Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces. Proc. IEEE 103(6), 871–890 (2015)

    Article  Google Scholar 

  16. Lotte, F., et al.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  17. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neur. Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  18. Mihajlović, V., Grundlehner, B., Vullers, R., Penders, J.: Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J. Biomed. Health Inform. 19(1), 6–21 (2014)

    Article  Google Scholar 

  19. Poulsen, A.T., Kamronn, S., Dmochowski, J., Parra, L.C., Hansen, L.K.: EEG in the classroom: synchronised neural recordings during video presentation. Sci. Rep. 7, 43916 (2017)

    Article  Google Scholar 

  20. Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)

    Google Scholar 

  21. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)

    Google Scholar 

  22. Saeb, S., Lonini, L., Jayaraman, A., Mohr, D.C., Kording, K.P.: Voodoo machine learning for clinical predictions. Biorxiv ar**v:059774 (2016)

  23. Seeck, M., et al.: The standardized EEG electrode array of the IFCN. Clin. Neurophysiol. 128(10), 2070–2077 (2017)

    Article  Google Scholar 

  24. Sha, L., Hong, P.: Neural knowledge tracing. In: Frasson, C., Kostopoulos, G. (eds.) International Conference on Brain Function Assessment in Learning. Lecture Notes in Computer Science, vol. 10512, pp. 108–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67615-9_10

    Chapter  Google Scholar 

  25. Tarimo, W.T., Deeb, F.A., Hickey, T.J.: Early detection of at-risk students in CS1 using teachback/spinoza. J. Comput. Sci. Coll. 31(6), 105–111 (2016)

    Google Scholar 

  26. Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025005 (2011)

    Article  Google Scholar 

  27. Zeyl, T., Yin, E., Keightley, M., Chau, T.: Partially supervised P300 speller adaptation for eventual stimulus timing optimization: target confidence is superior to error-related potential score as an uncertain label. J. Neural Eng. 13(2), 026008 (2016)

    Article  Google Scholar 

  28. Zhang, J., Wu, Y., Bai, J., Chen, F.: Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Trans. Inst. Meas. Control 38(4), 435–451 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aodong Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, X., Liu, P., Li, Z., Hickey, T. (2020). Multi-class Time Continuity Voting for EEG Classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds) Brain Function Assessment in Learning. BFAL 2020. Lecture Notes in Computer Science(), vol 12462. Springer, Cham. https://doi.org/10.1007/978-3-030-60735-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60735-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60734-0

  • Online ISBN: 978-3-030-60735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation