Usability of a Compliant Deltoid Mechanism as a Motion Transmission in Civil Engineering Machinery

  • Conference paper
  • First Online:
New Advances in Mechanisms, Mechanical Transmissions and Robotics (MTM&Robotics 2020)

Abstract

Recent advances in battery and actuator technologies enable their use in various small- and mid-sized devices in civil engineering. The principle of operation of most devices in civil engineering is based on rotary motions originating from combustion engines that are converted to linear motions via slider cranks. These relatively high-revving combustion engines require the use of a transmission in order to achieve lower frequencies on the output which is a necessity in most applications, e.g. for ground compacting vibrating tampers, which need tam** frequencies of about 16 Hz. The use of linear actuators or plunger coils bear the potential of reducing the number of parts while enhancing the efficiency. For the use of linear actuators different mechanisms can be utilized. This paper describes the classical slider crank for converting rotary into linear motions and two mechanisms for use with linear actuators or plunger coils, the double slider mechanism and the deltoid mechanism. All three mechanisms are described and analyzed. The deltoid mechanism is selected to be used in a demonstrator. The mechanism’s links and hinges are simplified using a compliant structure design. This compliant design and its construction and calculation process is described. The demonstrator is then built up and tested measuring its linear motion optically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanesi, A.E., Fachinotti, V.D., Pucheta, M.A.: A review on design methods for compliant mechanisms. In: Dvorkin, E., Goldschmit, M., Storti, M. (eds.) Mecánica Computacional Vol XXIX 2010, pp. 59–72. Asiciación Argentina de Mecánica Computacional, Buenos Aires (2010)

    Google Scholar 

  2. Modler, N.: Nachgiebigkeitsmechanismen aus Textilverbunden mit intergrierten aktorischen Elementen. Dissertation. TU Dresden, Dresden, Germany (2008)

    Google Scholar 

  3. Chen, L.: And integral approach for large deflection cantilever beams. Int. J. Non Linear Mech. 45(3), 301–305 (2010)

    Article  Google Scholar 

  4. Kemper, J.D.: Large deflections of tapered cantilever beams. Int. J. Mech. Sci. 10, 469–478 (1968)

    Article  Google Scholar 

  5. Lee, K.: Large deflections of cantilever beams of non-linear elastic material under a combined loading. Int. J. Non Linear Mech. 37(3), 439–443 (2002)

    Article  MATH  Google Scholar 

  6. Lewis, G., Monasa, F.: Large deflections of cantilever beams of nonlinear materials. Comput. Struct. 14(5–6), 357–360 (1981)

    Article  Google Scholar 

  7. Nallathambi, A.K., Rao, C.L., Srinivasan, S.M.: Large deflection of constant curvature cantilever beam under follower load. Int. J. Mech. Sci. 52, 440–445 (2010)

    Article  Google Scholar 

  8. Sevak, N.M.: Optimal synthesis of flexible link mechanisms with large static deflections. Dissertation. The Ohio State University, Columbus, Ohio (1972)

    Google Scholar 

  9. Shvartsman, B.: Large deflections of a cantilever beam subjected to a follower force. J. Sound Vib. 304, 969–973 (2007)

    Article  Google Scholar 

  10. Wang, C.Y.: Large deflections of an inclined cantilever with an end load. Int. J. Non Linear Mech. 16(2), 155–164 (1981)

    Article  MATH  Google Scholar 

  11. Zhang, A., Chen, G.: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms. J. Mech. Robot. 5(5), 1–10 (2013)

    Google Scholar 

  12. Banerjee, A., Bhattacharya, B., Mallik, A.: Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches. Int. J. Non Linear Mech. 43(5), 366–376 (2008)

    Article  MATH  Google Scholar 

  13. Dado, M., Al-Sadder, S.: A new technique for large deflection analysis of non-prismatic cantilever beams. Mech. Res. Commun. 32(6), 692–703 (2005)

    Article  MATH  Google Scholar 

  14. Modler, N., Hufenbach, W., Comsa, A., Maniu, I., Zichner, M., Friedrich, J.: Compliant structures in book handling applications. Appl. Mech. Mater. 162(3), 543–548 (2012)

    Article  Google Scholar 

  15. Wu, G., He, X., Pai, P.: Geometrically exact 3D beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures. Finite Elem. Anal. Des. 47(4), 402–412 (2011)

    Article  Google Scholar 

  16. Christen, G., Pfefferkorn, H.: Zum Bewegungsverhalten nachgiebiger Mechanismen. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 50(3), 53–58 (2001)

    Google Scholar 

  17. Kota, S., Lu, K.-J., Kreiner, Z., Trease, B., Arenas, J., Geiger, J.: Design and application of compliant mechanisms for surgical tools. J. Biomech. Eng. 12, 981–989 (2005)

    Article  Google Scholar 

  18. Salomon, B.: Mechanical advantages aspects in compliant mechanisms design. Diploma Thesis, Purdue University, West Lafayette, Indiana (1989)

    Google Scholar 

  19. Sevak, N.M., McLarnan, C.W.: Optimal synthesis of flexible link mechanisms with large static deflections. J. Eng. Ind. 97(2), 520–526 (1975)

    Article  Google Scholar 

  20. Ehrig, T., Koschichow, R., Dannemann, M., Modler, N, Filippatos, A.: Design and development of an active wheelchair with improved lifting kinematics using CFRP-compliant elements. In: ECCM18 – 18th European Conference on Composite Materials, Athens, Greece, 24–28, June 2018

    Google Scholar 

  21. Zichner, M.: Mechanismenelemente mit lokal angepasster Nachgiebigkeit. Dissertation. TU Dresden, Dresden, Germany (2018)

    Google Scholar 

  22. Lin, J., Luo, Z., Tong, L.: A new multi-objective programming scheme for topology optimization of compliant mechanisms. Struct. Multidiscip. Optim. 40(1), 241–255 (2010)

    Article  MATH  Google Scholar 

  23. Lu, K.-J., Kota, S.: Topology and dimensional synthesis of compliant mechanisms using discrete optimization. J. Mech. Des. 128(5), 1080–1091 (2006)

    Article  Google Scholar 

  24. Pandey, A., Datta, R., Bhattacharya, B.: Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft. Comput. 21(5), 1157–1179 (2017)

    Article  MATH  Google Scholar 

  25. Panganiban, H., Jang, G.-W., Chung, T.-J.: Topology optimization of pressure-actuated compliant mechanisms. Finite Elem. Anal. Des. 46(3), 238–246 (2010)

    Article  Google Scholar 

  26. Wang, M.Y., Chen, S., Wang, X., Mei, Y.: Design of multimaterial compliant mechanisms using level-set methods. J. Mech. Des. 127(5), 941–956 (2005)

    Article  Google Scholar 

  27. Zentner, L., Böhm, V.: Zur Anwendung nachgiebiger Mechanismen. Konstruktion: Zeitschrift für Produktentwicklung und Ingenieur-Werkstoffe 57(11–12), 49–50 (2005)

    Google Scholar 

  28. Hears, W.B.: Rigid Body Mechanics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)

    Google Scholar 

  29. Lohse, P.: Getriebesynthese: Bewegungsabläuft ebener Koppelmechanismen. Springer, Heidelberg (1986)

    Book  Google Scholar 

  30. Modler, K.-H., Luck, K.: Getriebetechnik – Analyse Synthese Optimierung, 2nd edn. Springer, Heidelber (1995)

    Google Scholar 

  31. Limaye, P., Ramu, G., Pamulapati, S., Ananthasuresh, G.K.: A compliant mechanism kit with flexible beams and connectors along with analysis and optimal synthesis procedures. Mech. Mach. Theory 49, 21–39 (2012)

    Article  Google Scholar 

  32. Venanzi, S., Giesen, P., Parenti-Castelli, V.: A novel technique for position analysis of planar compliant mechanisms. Mech. Mach. Theory 40(2), 230–241 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Howell, L.L., Midha, A.: A method for the design of compliant mechanisms with small-length flexural pivots. J. Mech. Des. 116(1), 280–290 (1994)

    Article  Google Scholar 

  34. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  35. Howell, L.L., Midha, A.: A loop-closure theory for the analysis and synthesis of compliant mechanisms. J. Mech. Des. 118, 121–125 (1996)

    Article  Google Scholar 

  36. Pucheta, M.A., Cardona, A.: Design of bistable compliant mechanisms using precision-position and rigid-body replacement methods. Mech. Mach. Theory 45(2), 304–326 (2010)

    Article  MATH  Google Scholar 

  37. Tian, Y., Shirinzadeh, B., Zhang, D.: Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation. Microelectron. Eng. 87(2), 230–241 (2010)

    Article  Google Scholar 

  38. Venkiteswaran, V.K., Su, H.-J.: A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams. Precis. Eng. 40, 46–54 (2015)

    Article  Google Scholar 

  39. Sigmund, O.: On the design of compliant mechanisms using topology optimization. J. Struct. Mech. 25(4), 493–524 (1997)

    Google Scholar 

  40. Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bendsoe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  42. Ananthasuresh, G.K., Kota, S., Gianchandani, Y.: A methodical approach to the design of compliant micromechanisms. In: Solid-State Sensor and Actuator Workshop, pp. 189–192 (1994)

    Google Scholar 

  43. Sigmund, O.: Some inverse problems in topology design of materials and mechanisms. In: Bestle, D., Schielen, W. (eds.) Symposium on optimization of mechanical systems, pp. 277–284. Kluwer, Netherlands (1996)

    Chapter  Google Scholar 

  44. Larsen, U.D., Sigmund, O., Bouwsta, S.: Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio. J. Microelectromech. Syst. 6(2), 99–106 (1997)

    Article  Google Scholar 

  45. Gaynor, A.T., Meisel, N.A., Williams, C.B., Guest, J.K.: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136(6), 061015 (2014)

    Article  Google Scholar 

  46. Dannemann, M., Holeczek, K., Leimert, J., Friebe, S., Modler, N.: Adapted measuring sequence for the determination of directional-dependent dynamic material properties using a bending resonance method. Polym. Test. 79, 1–10 (2019)

    Article  Google Scholar 

  47. taulman3D, LLC: Datasheet taulman Alloy 910. https://taulman3d.com/alloy-910-spec.html. Accessed 29 Mar 2020

Download references

Acknowledgments

The results shown in this paper originate from a project funded through the European Regional Development Fund (ERDF) and through means of taxation of the state of Saxony, Germany. This is here-by acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Johannes Steinbild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinbild, P.J. et al. (2021). Usability of a Compliant Deltoid Mechanism as a Motion Transmission in Civil Engineering Machinery. In: Lovasz, EC., Maniu, I., Doroftei, I., Ivanescu, M., Gruescu, CM. (eds) New Advances in Mechanisms, Mechanical Transmissions and Robotics . MTM&Robotics 2020. Mechanisms and Machine Science, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-60076-1_13

Download citation

Publish with us

Policies and ethics

Navigation