AGAN: An Anatomy Corrector Conditional Generative Adversarial Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The accurate segmentation of medical images has important consequences in clinical applications. Noisy and artefact-heavy images can result in erroneous image segmentation and often require expert understanding of the target anatomy by clinicians to interpret and compensate for missing and obfuscated data. This is especially true in ultrasound imaging where shadowing and speckle artefacts are common. We propose a novel approach to handle such artefacts using a conditional Generative Adversarial Network called Anatomical GAN (AGAN) that can correct anatomically-invalid pixel-wise segmentation and impose shape priors in carotid artery ultrasound images by learning the underlying structure of the arteries. These anatomically accurate outputs can then be used in the clinical work flow by clinicians or be further processed by other automated methods for assistance in clinical decision making. AGAN can be chained with any pixel-wise segmentation method and is generalisable for both anatomy and artefacts. Experimental results on a longitudinal ultrasound carotid artery dataset show that AGAN can correct anatomically-invalid segmentation masks obtained with different pixel-wise segmentation methods when other state-of-the-art methods fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  2. Bouteldja, N., Merhof, D., Ehrhardt, J., Heinrich, M.P.: Deep multi-modal encoder-decoder networks for shape constrained segmentation and joint representation learning. In: Handels, H., Deserno, T.M., Maier, A., Maier-Hein, K.H., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019, pp. 23–28. Springer Fachmedien Wiesbaden, Wiesbaden (2019)

    Chapter  Google Scholar 

  3. Dalca, A.V., Guttag, J.V., Sabuncu, M.R.: Anatomical priors in convolutional networks for unsupervised biomedical segmentation. CoRR abs/1903.03148 (2019). http://arxiv.org/abs/1903.03148

  4. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2016)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  6. Larrazabal, A.J., Martinez, C., Ferrante, E.: Anatomical priors for image segmentation via post-processing with denoising autoencoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 585–593. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_65

    Chapter  Google Scholar 

  7. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=B1QRgziT-

  8. Oktay, O., et al.: Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging (2017). https://doi.org/10.1109/TMI.2017.2743464

  9. Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar, P., Vaidya, V.: Learning and incorporating shape models for semantic segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 203–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_24

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Sekuboyina, A., Rempfler, M., Valentinitsch, A., Kirschke, J.S., Menze, B.H.: Adversarially learning a local anatomical prior: vertebrae labelling with 2D reformations. CoRR abs/1902.02205 (2019). http://arxiv.org/abs/1902.02205

  12. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

  13. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. CoRR abs/1711.11585 (2017). http://arxiv.org/abs/1711.11585

  14. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. CoRR abs/1704.02510 (2017). http://arxiv.org/abs/1704.02510

  15. Zhang, H., Goodfellow, I.J., Metaxas, D.N., Odena, A.: Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, pp. 7354–7363 (2019). http://proceedings.mlr.press/v97/zhang19d.html

  16. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melih Engin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engin, M. et al. (2020). AGAN: An Anatomy Corrector Conditional Generative Adversarial Network. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation